
'^) M€>T€>fi€>LM M68KDRVGD/D3

Guide to Writing

Device Drivers

for VERSAdos

r^

QUALITY • PEOPLE • PERFORMANCE

-^

(g) MOTOROLA

M68KDRVGD/D3

JANUARY 1986

GUIDE TO WRITING

DEVICE DRIVERS

FOR VERSAdos

The information in this document has been carefully checked and is believed to

be entirely reliable. However, no responsibility is assumed for inaccuracies.

Furthermore, Motorola reserves the right to make changes to any products

herein to improve reliability, function, or design. Motorola does not assume

any liability arising out of the application or use of any product or circuit

described herein; neither does it convey any license under its patent rights

or the rights of others.

EXORmacs, EXORterm, MACSbug, RMS68K, VERSAdos, VERSAmodule, VMEmodule, and

VME/10 are trademarks of Motorola Inc.

Third Edition

Copyright 1986 by Motorola Inc.

First Edition September 1983

Second Edition March 1985

MICROSYSTEMS

(M) MOTOROLA

REVISION RECORD

M68KDRVGD/D2 - March 1985. Reflects VERSAdos version 4.4. Adds support of

the VERSAmodule 04 Monoboard Microcomputer (VM04), and VMEitiodules MVME120/121

and MVME122/123. The "Driver Synthesis Example" chapter and the "Sample

Driver Skeleton" appendix are removed. The driver addition algorithms for

SYSGENing drivers into VERSAdos and RMS68K are revised. Chapters are added

that describe the TERMLIB file, which defines device-independent routines

required by driver writers, and techniques useful for debugging driver code.

The appendix listing examples of CDBs and DCBs is replaced by separate

appendices that describe the structure of these entities and provide updated

examples. Appendices are added to describe the background and call -guarded

modes of operation, and to provide examples of files created by driver

writers.

M68KDRVGD/D3 -- January 1986. Minor corrections to the text have been made.

MICROSYSTEMS

@) MOTOROLA

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION 1

1.2 OVERVIEW 1

1.3 RELATED PUBLICATIONS 2

CHAPTER 2 THE EXECUTIVE RMS58K

2.1 INTRODUCTION 3

2.2 THE LAYERED STRUCTURE OF RMS58K 3

2.3 THE CHANNEL MANAGEMENT REQUEST (CMR) ROUTINES 5

2.3.1 The CMR Handler Calls 7

2.3.2 Channel Types 8

2.3.3 Channel Data Blocks (CDBs) 11

2.3.4 Channel Control Blocks (CCBs) 11

2.3.5 Use of Registers Inside a Driver 12

2.3.6 Invoking the CMR Handler 12

CHAPTER 3 VERSAdos

3.1 INTRODUCTION 15

3.2 DEVICE CONTROL BLOCKS (DCBs) 15

3.3 THE IOC FILES AND MACRO FILES 15

3.4 INITIALIZATION -- GETTING THINGS STARTED 15

3.4.1 The SYSGEN System Map 15

3.4.2 The lOT Task 17

3.4.3 The lOSG Segment 18

3.4.4 The Logical Unit Table 18

3.5 COMMUNICATION BETWEEN USER TASKS AND THE I/O SYSTEM 20

CHAPTER 4 THE DRIVER

4.1 INTRODUCTION 23

4.2 INTERRUPTS AND THEIR HANDLERS 23

4.3 THE 4-ELEMENT STRUCTURE FOR A DEVICE DRIVER 25

4.3.1 The Vector Table 26

4.3.2 The Initialization Routine 27

4.3.3 The Command Service Routine 28

4.3.4 The Interrupt Service Routine 28

4.4 EQUATE FILES: lOE, TRl, TERMCCB, CCB, TCB 30

4.5 OBTAINING EXTRA MEMORY FOR THE DRIVER 30

4.5 DRIVER CALLS TO RMS68K {TRAP #0) 31

MICROSYSTEMS

(M) MOTOROLA

TABLE OF CONTENTS (cont'd)

Page

CHAPTER 5 I/O WITH RMS68K

5.1 INTRODUCTION 33
5.2 EXECUTION OF AN I/O REQUEST WITHOUT USING lOS 33
5.3 A DRIVER ADDITION ALGORITHM FOR SYSGENING RMS68K DRIVERS . 35
5.4 MAP OF INCLUDE FILES IN SYSGEN FILES (WITH PROCESS

CONTROL DRIVER) 39

CHAPTER 6 I/O WITH VERSAdos

6.1 INTRODUCTION 41

6.2 EXECUTION OF AN I/O REQUEST USING lOS 41

6.3 A DRIVER ADDITION ALGORITHM FOR SYSGENING VERSAdos DRIVERS 41

6.4 MAP OF INCLUDE FILES IN THE SYSGEN FILES (WITHOUT
PROCESS CONTROL DRIVER) 50

CHAPTER 7 TERMLIB

7.1
7.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.2
7.3.2.1
7.3.2.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.1.4
7.4.1.5
7.4.1.6
7.4.1.7
7.4.1.8
7.4.1.9
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3

INTRODUCTION 51

DRIVER ROUTINE FILES 51

DRVLIB ROUTINES 51

QEVENT 51

QEVENT Subroutine Descriptions 52

Entry and Exit Conditions and Register Usage 52

QEVENT Examples 53

LOGPHY 55

Entry and Exit Conditions and Register Usage 55
LOGPHY Example 55

SET_TIME 56
Entry and Exit Conditions and Register Usage 56
Notes on using SET TIME 56

SET_TIME Example 56
TERMLIB ROUTINES 58

XDEFed Routines Called as Subroutines 58
LOG_ERR 58
RESET 59

TERM_INIT 59
TERM_COMMAND 61

TERM_BREAK 69
TERM_TBE 70
TERM_GOT CHAR 71

TERM_UNRDY 72
MARK_DOWN 73

Background Routines Called with the BKGRND Macro 75
How the Background and Call -Guarded Modes Work 75
Using the BKGRND and SET_BAB Macros 75

How to Write a Background Routine 77

n MICROSYSTEMS

® MOTOROLA

TABLE OF CONTENTS (cont'd)

Page

7.4.2.4 RECV 77

7.4.2.5 BREAK 79

7.4.2.6 XMIT 79

7.4.2.7 BLOCK 84

7.4.2.8 UNBLK 84

7.4.2.9 STOP 85

7.4.2.10 B_BRK 85

7.4.2.11 E_BRK 85

7.4.3 Transparent Mode Routines as Implemented in TERMLIB 85

7.4.3.1 How Transparent Mode Is Set Up 85

7.4.3.2 TM_OUTPUT 87

7.4.3.3 TM_BREAK 87

7.5 WRITING THE DEVICE-DEPENDENT MODULE 87

7.5.1 Tables and Routines Required by TERMLIB 87

7.5.1.1 Branch Table 87

7.5.1.2 Initialization Requirements 88

7.5.1.3 PUT_CHAR: Put Out a Character to the Device 89

7.5.1.4 CK_TBE: Check to See if the Transmit Buffer Is Empty 89

7.5.1.5 DDPRESET: Device-Dependent Reset 89

7.5.1.6 SETUP: Set Up the Device According to the

Configuration 89

7.5.1.7 CLOCK RESET: Reset the Clock 90

7.5.1.8 GET_STAT: Get Device Status 90

7.5.1.9 DDP_STOP: Device-Dependent STOP 91

7.5.1.10 DDP_UNSTOP: Device-Dependent UNSTOP 91

7.5.1.11 DDP_BEG_BREAK: Device-Dependent Begin BREAK 92

7.5.1.12 DDP_END_BREAK: Device-Dependent End BREAK 92

7.5.2 Required INCLUDE Files 92

7.5.3 An Example: The MPSC Driver Structure 92

7.6 SYSGENING THE NEW DRIVER INTO VERSAdos 97

7.6.1 TCHTYPE.AG 97

7.6.1.1 Channel Type 98

7.6.1.2 Driver Code 98

7.6.1.3 Attributes Mask 98

7.6.1.4 Parameters Mask 99

7.6.1.5 Mask of Recognized Baud Rates 99

7.6.2 MYDRIVER.CI 99

7.6.3 MYDRIVER.LG 100

CHAPTER 8 DEBUGGING THE DRIVER

8.1 INTRODUCTION 101

8.2 DRIVER DEBUGGING TECHNIQUES FOR VERSAdos 101

8.3 I/O EVENT STRUCTURE 103

m MICROSYSTEMS

(^ MOTOROLA

TABLE OF CONTENTS (cont'd)

Page

APPENDIX A
APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX
APPENDIX
APPENDIX

THE CHANNEL MANAGEMENT REQUEST (CMR) HANDLER Ill

DRIVER CALLS TO RMS68K (TRAP #0) 125

VERSAdos TRAP #n MAP 157

COB STRUCTURE 159

DCB STRUCTURE 175

SAMPLE FILES CREATEDBYTHEDRivERWRiTER* 1 !!!!!!!!!!!!!!

!

181

BACKGROUND AND CALL-GUARDED MODES 205

LIST OF ILLUSTRATIONS

FIGURE 2-1.
2-2.

2-3.

3

3

4

4

5

6

6

7

7

7

7

7

1.

2.

1.

2.

1.

1.

2.

I.

2.

3.

4.

5.

7-6.

Representation of Vector Chains 6

Representation of Supervisor/Subordinate Chain 10

Initiate I/O Directive Flow 13

SYSGEN System Map (EXORmacs) 16

Format of the Logical Unit Table 19

Representation of Interrupts, CCBs, and the CMR Handler .. 24

Structure of a Driver 29

Executing an I/O Request without Using lOS 34

Executing an I/O Request Using lOS 42

Overview of Driver Installation into VERSAdos 43

Background Activation Block Structure 76

SET_BAB Macro Example 76

User CSB Entering Configure-Defaults Command 86
User CSB Exiting Configure-Defaults Command 86

MPSC Driver Structure (4 Sheets) 93

TERMLIB.TF Structure 97

LIST OF TABLES

TABLE 2-1. RMS68K Functional Layers
7-1. lOS Command/Routine Hierarchy

4

63

TV MICROSYSTEMS

(^ MOTOFIOLA INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This document defines and describes the information necessary for writing an

Input/Output (I/O) device driver to run under VERSAdos. An I/O device driver

(also referred to as an I/O handler) is the portion of an I/O system which is

responsible for the device-dependent functions corresponding to a particular

device.

NOTE

Unless otherwise specified, the designations
"M68000" and "MC68000" refer to the entire

M68000 family of microprocessors.

1.2 OVERVIEW

Chapter 2 describes the Real-Time Multitasking Software for the M68000,

referred to as RMS68K or the Executive (EXEC) throughout this document. All

data structures required by, and services provided for, the driver writer that

are supported directly by the RMS68K kernel are described here.

Chapter 3 adds descriptions of those services and structures supported by

VERSAdos directly to those of the EXEC.

Chapter 4 defines and describes the driver structure itself, and provides a

description of supporting equate files and EXEC system calls.

Chapters 5 and 6 describe, respectively, the (I/O) sequences under RMS68K and

VERSAdos, and also provide an algorithm for adding drivers to a system running

either directly under the EXEC (Chapter 5) or under VERSAdos (Chapter 6).

Chapter 7 describes the TERMLIB file, which defines the device- independent

routines required in writing drivers. It discusses each TERMLIB routine and

also explains how to write a driver using TERMLIB and how to incorporate it

into the operating system.

Chapter 8 describes techniques useful for debugging drivers, and includes a

discussion of the I/O completion event structure.

Seven appendices are also included to provide in one document all the

reference information a driver writer might need while developing a driver.

These appendices discuss the Channel Management Request (CMR) handler; driver

calls to RMS68K (TRAP #0); services provided by TRAP #n calls; the structure

of Channel Data Blocks (CDBs), Channel Control Blocks (CCBs), and Device

Control Blocks (DCBs); and the characteristics of background and call -guarded

modes. They also provide sample CDBs, DCBs, and numerous files that are

created by the driver writer.

MICROSYSTEMS

® MOTOROLA INTRODUCTION

n This manual assumes that the user is already familiar with the VERSAdos
utility SYSGEN and its associated files. Previous experience with SYSGEN
execution and familiarity with the files lOC.xxxxDRV.AG files will be helpful.

Filenames referred to in this guide are files from either a source or object
release of VERSAdos. The user numbers and catalog names of files may be found
by searching the directories of the release media.

1.3 RELATED DOCUMENTATION

The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola's Literature
Distribution Center, 616 West 24th Street, Tempe, AZ 85282; telephone (602)
994-6561.

DOCUMENT TITLE
MOTOROLA

PUBLICATION NUMBER

System Generation Facility User's Manual M68KSYSGEN

M68000 Family Real-Time Multitasking Software M68KRMS68K
User's Manual

VERSAdos Data Management Services and Program Loader RMS68KI0
User's Manual

VERSAdos to VME Hardware and Software Configuration MVMEVDOS
User's Manual

RADl Device Driver Software User's Manual M68KRADDRV

16/32-Bit Microprocessor Programmer's Reference Manual M68000UM

SYMbug/A and DEbug Monitors Reference Manual M68KSYMBG

MICROSYSTEMS

(g) MOTOROLA THE EXECUTIVE RMS68K

CHAPTER 2

THE EXECUTIVE RMS68K

2.1 INTRODUCTION

The Motorola MC68000 Real-Time Multitasking Software is a multitasking kernel
around which real-time application systems can be built. The powerful, yet
general, nature of the Multitasking Software allows a wide variety of
application systems to be developed without a large expenditure of design and
programming effort on the complex real-time and multitasking functions.

RMS68K is compatible with the Motorola MC68000 microprocessor and the VERSAdos
operating system. Therefore, programs designed to execute under the control
of RMS68K will also execute under the control of VERSAdos on systems built
around the MC68000.

A real-time system must respond to external events as those events occur.
Because it is not known at which point an external event will occur, a real-
time system is said to execute asynchronously.

Unlike a batch system where one operation is completed before a new operation
is started, a real-time system can delay the completion of one operation so
that another operation can be started, continued, or completed. This
mechanism, where more than one operation is in progress at a given time, is

called concurrent processing. Even though only one operation can be executing
at a given time using a single central microprocessing unit, the concurrent
processing mechanism of a real-time system makes it appear as though several
operations are executing simultaneously.

A real-time application system can be broken down into several tasks. A task
is a function (or operation) which can execute concurrently with other
functions. A task can be written to process a single type of event, or it can
process more than one type of event.

2.2 THE LAYERED STRUCTURE OF RMS68K

RMS68K is comprised of a task controller, an intertask communication facility,
an optional memory management facility, and an initialization facility. These
facilities allow RMS68K to perform the following functions.

. Receive all hardware and software interrupts and dispatch them to the
proper task for processing.

. Dispatch tasks competing for use of the microprocessing unit.

. Provide intertask communication and synchronization.

B

MICROSYSTEMS

(g) MOTOROLA
THE EXECUTIVE RMS68K

B

. Manage and allocate memory.

. System initialization capability.

. Diagnostic feedback during error conditions.

RMS68K is structured in logical layers with each layer performing a particular

range of functions, as described in Table 2-1.

TABLE 2-1. RMS68K Functional Layers

LAYER DESCRIPTION

Internal Provides functions used by RMS68K to manage the

processor tasks, and physical devices such as

timers. Performs work on behalf of requests from

user tasks.

External Provides functions directly available to user

tasks through the use of directives.

Channel Management Provides channel -oriented physical I/O functions.

Request routines All device drivers supplied with VERSAdos and

RMS68K use this optional channel management
mechanism for I/O.

User tasks can request RMS68K to perform functions by using Executive

directives. An Executive directive contains all of the information needed by

RMS68K to perform the desired function. Functions provided are described in

Chapter 4 of the M68000 Family Real-Time Multitasking Software User's Manual.

RMS68K is supplied in two parts: one part is the internal/external layer

software; the other part is the CMR software. The internal/external layer

software requires approximately 800 bytes of RAM memory for system parameter

data, and approximately 18Kb of memory for program code. This program code

can be ROM resident or bootstrap-loaded RAM. Dynamic system tables created

during execution of RMS68K are not reflected in these numbers.

The CMR software requires an additional 2Kb of memory for program code. This

also can be ROM resident or bootstrap-loaded RAM.

The hardware requirements for an RMS68K-based application system are:

. MC68000 microprocessor

. Adequate memory

. Optional real-time clock

MICROSYSTEMS

® MOTOROLA ™^ EXECUTIVE l!HS68K

The amount of memory required will vary from one system to another, depending
on the system environment, user- supplied code and data, and the RMS68K
functions configured in the user system. The maximum memory requirement for
the entire RMS68K is provided in a preceding paragraph. This can be decreased
by including only the necessary RMS68K functions in the system.

If the system is to use the delay task and periodic task activation functions
of RMS68K, a real-time clock must be provided. This can be accomplished by
means of a software clock mechanism that the user configures as part of
RMS68K, or by means of a hardware device such as the Motorola 6840
Programmable Timer Module. The requirements listed above may be satisfied
through use of a Motorola VERSAmodule Monoboard Microcomputer, VMEmodules, or
a user-designed MC68000 microprocessor-based module.

2.3 THE CHANNEL MANAGEMENT REQUEST (CMR) ROUTINES

CMR routines reside as part of RMS68K. They logically manage channels and
provide the link between memory mapped I/O space, interrupt vectors, and
interrupt service routines. They also provide the link between requester and
command service routines.

A channel is a single contiguous portion of memory mapped I/O space associated
with one or more polled identity conditions of interrupt.

A channel has a corresponding hardware interrupt vector number, a hardware
priority level, and a software priority number. These three items are used to
link devices into polling chains, which are used by a polling routine to
determine which channel is associated with an incoming interrupt. When a

channel is allocated, the CMR handler creates a Channel Control Block (CCB)
for that channel. The CCB contains all of the information needed by the CMR
handler to manage that channel. The CCB is then placed into the appropriate
polling chain. There is a polling chain for every external interrupt vector.
The CCBs are chained according to the software priority number: those with
higher software priority numbers will be nearer to the head of the chain, and
thus serviced more rapidly when an interrupt occurs. Refer to Figure 2-1 for
a representation of polling chains.

When an interrupt occurs, control is passed through the first CCB (with a

Jump-to-Subroutine (JSR) instruction) to the CMR interrupt handler routine.
The CMR handler will do a minimum state save, resolve the CCB address, and
call the appropriate I/O handler. If the I/O handler returns without claiming
the interrupt, the CMR handler will call the handler of the next CCB chained
for that vector. This continues until the chain is exhausted.

B

MICROSYSTEMS

(M) MOTOROLA THE EXECUTIVE RMS68K

B AUTO VECTORS
(25-31)

USER VECTORS
(M-Z55)

f
VECTOR

25
VECTOR
64

X

>

•

•

•

•

•

•

\
1

i

\
1 VECTOR

31

VECTOR
255t ^

: i w
\i HIGHER

SOFTWARE
PRIORITY
NUMBER

CHANNEL
> CONTROL
^ BLOCKS

1
i

r

i

•

•

1
•
•
•

•

i

'

LOWER
SOFTWARE
PRIORITY
NUMBER

FIGURE 2-1. Representation of Vector Chains

MICROSYSTEMS

(^ MOTOROLA THE EXECUTIVE RMS68K

2.3.1 The CMR Handler Calls

User task interaction with channels is performed through requests made to the
CMR handler. The following functions are available:

CMR FUNCTION

ALLOCATE

ENTERS DRIVER FUNCTION/DESCRIPTION

YES

ATTACH NO

DELETE

DETACH

HALT

NO

NO

YES

INITIATE I/O YES

PUT ON LINE

RESET

TAKE OFF LINE

NO

YES

NO

Generates CCB from a Channel Data Block (CDB)

and links CCB into correct position in

interrupt polling chain, then enters driver at

its initialization routine with JSR
instruction.

Logically connects channel to requesting task;

this makes requesting task the channel driver.
An ATTACH request must be made before any
INITIATE requests. Channel must be online
(using the PUT ON LINE request) before ATTACH
requests can be made.

DETACHes channel from requesting task; removes
CCB from the system.

Dissolves logical connection between specified
channel and requesting task.

Terminates I/O in progress on a channel. HALT
is applicable to nonstandard channels only.
Request passed directly to driver.

Invokes the appropriate I/O handler (driver)
at command service routine. The I/O function
requested is passed to the driver by way of
the pointer to the Input/Output Control Block
(lOCB; refer to I/O Services description). An
ATTACH request is required before any INITIATE
requests.

Removes the specified channel from offline
status, thus allowing ATTACH requests.

Resets interrupts applicable to standard and
shared-access channels only. Request passed
directly to driver.

Gives offline status to the specified channel,
thus preventing ATTACH requests.

B

Normally a channel is allocated when the system is initialized. When a user
task must perform an I/O function on a particular device, it ATTACHes to the
appropriate channel. The user task is then able to initiate I/O. When I/O
function is complete, the user task can either DETACH from the channel or
remain attached for future I/O requests. The CMR calls and parameter blocks
are detailed in Appendix A.

MICROSYSTEMS

D

(g) MOTOROLA THE EXECUTIVE RMS68K

2.3.2 Channel Types

Four types of channels are available for use under RMS68K/VERSAdos: standard,

nonstandard, shared-access, and interrupt-only. Channel types are identified

by a number defined when the channel is allocated by the CMR handler.

Standard channels are any channels being added to a VERSAdos operating system.

The CMR handler makes a variety of checks on parameter blocks used to perform
communication over standard channels.

Nonstandard channels are those that do not have the CMR handler check the

parameter blocks; thus, users can define their own protocols, which would be

included as part of the driver code.

Shared-access channels are those that allow more than one physical device to

be attached to them, thus enabling several user tasks to use the channel

simultaneously.

Interrupt-only channels are those that provide a means for external devices to

interrupt the operating system but not communicate in any other way (i.e.,

pass no information to and accept no information from the operating system).

A code which indicates channel type is defined for a channel when that channel

is allocated. Codes in the range of $10 through $7F are reserved for standard
VERSAdos channels (including serial port channels). Values in the range of

$01 through $0F indicate nonstandard channels. Values in the range of $80

through $8F indicate shared channels that can initiate I/O by more than one

task. The value $FF indicates an interrupt-only channel.

CODE CHANNEL DEVICE

$01-$0F Nonstandard CMR channels
$10-$5F Other standard channels
$60-$7F Serial port channels
$80-$8F Shared-access channels
$FF Interrupt-only channel

Channels $60 through $7F are reserved for serial port modules, with the even

number reserved for port A and the odd number for port B. If the module has a

single port, its channel number must be even, with the odd number of the pair
remaining unused. This scheme is used by the generic serial driver file

TERMLIB to determine module type.

File 9993.&.TCHTYPE.AG contains a table of serial port channel numbers

recognized by the generic serial port driver file TERMLIB. In TCHTYPE.AG,

entries are in the following format:

DC.B <channel type>
DC.B <driver code>
DC.W ottributes mask>
DC.W <parameters mask>
DC.L <mask of recognized baud rates>

MICROSYSTEMS

(M) MOTOROLA THE EXECUTIVE RMS68K

Users who wish to use TERMLIB when writing a new serial port driver must add
an entry (or two entries for two ports) to the file 9993.&.TCHTYPE.AG.

Some devices possess more than one channel (e.g., some serial controller
chips). In many cases, such a device gives the same interrupt, regardless of
the channel which caused it, and each of the channels must inspect the device
to determine whether the interrupt belongs to that channel.

This can create a problem if reading the device's registers in some way
signals the device (it might clear the interrupt, for example). To provide
for this situation, CMR provides a scheme for a single channel to read the
device and communicate with (and pass control to) other channels.

For such a situation, supervisor and subordinate channels must be used. A
SUPERVISOR CHANNEL is allocated first (option bit 4 on the ALLOCATE command),
and then the SUBORDINATE CHANNELS are allocated (option bit 3) with the
supervisor's channel mnemonic in field 8. Thus, the subordinate channels
receive requests to initiate I/O as usual, but all their interrupts are
directed to the supervisor. The supervisor (which must be written to suit,
out to the appropriate subordinate channels) then fields the interrupt and
farms it out to the appropriate subordinate in whatever manner the designer
desires. For example, the details of entry into the subordinate channel for
proper interrupt handling are left undefined; the CMR handler only passes the
interrupt to the supervisor.

The supporting data structure is a linked list starting from the supervisor
channel and containing all (there is no limit) subordinates, using the
longword CCBSUB in the CCB. It is expected that the supervisor will search
this list for a driver corresponding to the particular interrupt type.

The supervisor channel is linked into the vector chain for the specified
vector, but the subordinate channels are not. Therefore, the only way they
will ever be entered for interrupt service is if the supervisor channel jumps
into them. Figure 2-2 depicts the chaining of subordinate channels in
relation to the vector chain.

There are some rules associated with this:
I

. A single channel may not be both a supervisor and a subordinate.

. A channel may not be allocated as a subordinate to a channel which is
not a supervisor.

. The supervisor must be allocated before its subordinates.

. The supervisor and all its subordinates must specify the same vector.

. It is illegal to ATTACH a supervisor.

Violation of any of these rules results in the EXEC error code RTCDLGCF ($09:
Request conflicts with existing table entries).

User task interactions with channels are performed through requests made to
the CMR handler. The available CMR functions are listed in paragraph 2.3.1.

MICROSYSTEMS

B

(g) MOTOROLA

Vector Table

THE EXECUTIVE RMS68K

B
Vector chain

CCB
Supervisor

CCB CCB
-, Vector

chain

Subordinate
CCB

FIGURE 2-2. Representation of Supervisor/Subordinate Chain

10 MICROSYSTEMS

(g) MOTOROLA
THE EXECUTIVE RMS68K

2.3.3 Channel Data Blocks (CDBs)

A variety of options are available for CMR software. VERSAdos requires the

option which enables the CMR routines. The CMR handler is responsible for

establishing and managing channels. To establish a channel, an ALLOCATE call

must be made to the CMR handler. The parameter block required for this call

is referred to as a CDS. The result of making an ALLOCATE call to the CMR

handler is a CCB, which is set up by the CMR handler from the driver writer-

supplied CDB. Each channel set up requires a unique CCB; therefore, a unique

CDB must be provided for each channel. Appendix D lists a standard sample

VERSAdos CDB. Additional samples include the SYSGEN output files.

The file MACRO. DCB. SI contains the macro for defining the device-independent

part of the DCBs. It also contains a macro for defining CDBs, the format of

which is provided in Appendix D, followed by the data block field

descriptions.

2.3.4 Channel Control Blocks (CCBs)

When a task (normally lOI, the VERSAdos I/O Initializer) calls upon CMR

software to allocate a channel, the CMR handler dynamically creates a CCB.

The CCB contains the variables that are used to control the associated

channel. Because a CCB is dynamically created for each channel as the channel

is allocated, I/O drivers that use CCBs should be coded as reentrant routines.

Memory is allocated in page-sized units of 256 bytes (i.e., $100) per page.

Because the CMR handler allocates the memory for a CCB when a channel is

allocated, a CCB always contains an integral number of pages of memory. The

CMR handler always allocates at least one page of memory for a CCB because

part of a page is required for universally defined variables that reside in

the CCB for any type of I/O Channel. Because the CMR handler always allocates

at least one page for a CCB, the first page of a CCB is referred to as the

primary CCB area.

The CMR handler allocates additional page(s) for the CCB if the CMR parameter

table near the beginning of the device driver for the channel specifies that

additional CCB page(s) should be allocated for use by the driver. The device

driver can use part of the primary CCB area and all of the additional CCB area

for device-dependent variables. The additional CCB area is sometimes referred

to as the extended CCB area.

The first part of. a CCB contains several universally defined fields that are

present in all CCBs for all kinds of channels and devices. This section deals

with the universally defined fields of a CCB.

The CMR handler initializes many of the universally defined fields in a CCB at

channel allocation time, and the values in these fields generally remain

unchanged throughout the life of the channel. Some of the universally defined

fields in a CCB are initialized by the CMR handler when a task (normally lOS,

the VERSAdos Input/Output Services) attaches itself to the channel that is

associated with the CCB. The values in these fields generally remain

unchanged for as long as the channel remains attached to the same task. In

practice, the channel always remains attached to the same task, and that task

^^ MICROSYSTEMS

® MOTOROLA "^"^ EXECUTIVE RMS68K

is normally lOS. A few of the universally defined variable fields in a CCB
are set dynamically whenever the CMR handler is invoked to process a request
to initiate an I/O transaction; these fields remain unchanged only until the
next request for an I/O transaction is received. At least one universally
defined field of a CCB is used by the CMR handler as a dynamic flag field, and
several fields of a CCB are reserved for future use as universally defined
fields. The remaining parts of a CCB are available for use by the channel's
device driver for device-dependent variables.

Some of the universally defined fields in a CCB are used primarily by the CMR
handler, and others are important to the I/O device driver that manages the
channel. The structure of a CCB is diagrammed in Appendix D.

2.3.5 Use of Registers Inside a Driver

The registers referred to here are the MC68000 microprocessor internal address
registers AO through A7 and data registers DO through 07. Driver writers will
need to use some of these registers in their drivers. Therefore, it is

important to understand which registers are available for use, and what steps
must be taken if additional registers are required.

When an interrupt occurs, control is passed through the first CCB (with a JSR
instruction) to the CMR interrupt handler routine. The CMR handler will do a

minimum state save of registers (refer to paragraph 4.2), resolve the CCB
address, and call the appropriate I/O handler (i.e., the driver). Only
registers AO, Al, A5, and DO are available for use without additional code to
save the contents (as other registers require).

2.3.6 Invoking the CMR Handler

A user task makes a request to the CMR handler with an RMS68K directive. A
user task issues this directive to RMS68K by executing a TRAP #1 instruction
(refer to Figure 2-3). Register DO must contain the directive number of value
60, and register AO must contain a pointer to a parameter block. The
parameter block format varies according to the exact request, and is
documented in Appendix A.

An example of a user task making a CMR handler request is shown below:

UTSK:

MOVE.L #60, DO LOAD DIRECTIVE NUMBER
LEA PRMBLK,AO LOAD PARAMETER BLOCK POINTER
TRAP #1 ISSUE DIRECTIVE

PRMBLK: DEFINE THE PARAMETER BLOCK

^^
MICROSYSTEMS

® MOTOFtOLA THE EXECUTIVE RMS68K

o -J
— o
> z
UJ <
O X

3o

O)
>

u
O)
s-

a
o
I—

I

<u
(->

llJ

> a.
t- UJ UJ

UJ 0. -J 0. _i
1- 3 < o
< q: t- a. z
_J (£ (n i- <
3 u a: I
3 K i-i

z li.

(O •-'

< o
(£ Z
I- <

UJ Ifl

(/) <
rs I-

13 MICROSYSTEMS

(^ MOTOROLA THE EXECUTIVE RMS68K

B

RMS68K will invoke the CMR handler when a directive number 60 is issued. The
CMR handler then interprets the contents of the parameter block to determine
the actions to be taken. When the CMR handler receives an INITIATE I/O
request, it will invoke one of the I/O handlers. The particular I/O handler
invoked depends upon the service address supplied when the channel was
allocated. There is one I/O handler for each channel.

When a user task issues a request to the CMR handler, the task is placed in

the READY state list. When that task regains control, the CMR handler will
have acted on the request. The low order byte of register DO will contain
zero if the request was successfully completed; it will contain an error code
if the request was not successfully completed. The Z bit of the status
register will reflect the contents of register DO: Z = 1 if register DO = 0;

Z = otherwise. The value of the Z bit can be tested by using an MC68000 Bcc
instruction (BEQ, BNE).

It is important to realize that if an INITIATE I/O request is made to the CMR
handler, the error code returned by the CMR handler merely indicates the
successful or unsuccessful invocation of the I/O handler. It does not reflect
the successful or unsuccessful completion of the I/O function performed by the
I/O handler.

A more complete description of CMR software and its parameter blocks is

provided in Appendix A.

14 MICROSYSTEMS

(M) MOTOROLA VERSAdos

CHAPTER 3

VERSAdos

3.1 INTRODUCTION

VERSAdos is a modular, multi layered operating system whose structure and
services are oriented to solving the general purpose software generation
requirement associated with the development of microprocessor-based systems
and to providing the executive requirements of dedicated, real-time,
multitasking/multi-user application systems.

To illustrate the structure of VERSAdos, the following descriptions and
discussions relate to Figures 3-1 and 3-2.

3.2 DEVICE CONTROL BLOCKS (DCBs)

Each channel set up in the system requires a Channel Data Block (CDB). Each
device in the system may require a DOB. Only devices that are assigned using
TRAP #3 and accessed through the Input/Output Services (IDS) TRAP #2 interface
have DCBs. None of the 600-series process control drivers have DCBs, for
exampl e

.

CDBs are discussed in Chapter 2.

DCBs are VERSAdos structures that contain information about devices (e.g.,

their default configuration). Devices that require DCBs include terminals,
printers, disks, magnetic tape, and some special devices such as the MVME300
General Purpose Interface Bus (GPIB) module. After VERSAdos has been booted
and initialized, the DCBs can be found in the shared memory segment, lOSG.

There is always a null device whose DCB is last in the chain because its

pointer to the next DCB is set to zero.

Appendix E of this document and Appendix B of the System Generation Facility
User's Manual provide examples of DCBs for terminals, printers, and disks.

3.3 THE IOC FILES AND MACRO FILES

To add DCBs to the operating system, they should be included in the file

lOC.xxxxDRV.AG for the driver, where xxxxDRV is the name of the driver, and

xxxx indicates the module number when applicable. For example, I0C.M435DRV.AG
is the configuration file for the magnetic tape driver on the MVME435 module.

For a more detailed description of the lOC.xxxxDRV.AG files, refer to

paragraph 6.3, "A Driver Addition Algorithm for SYSGENing VERSAdos".

Macros that define DCBs consist of two parts. The first part is the device-
independent section and is found in MACRO.DCB.SI. The second part is the
device-dependent section and is found in one of the following files:

^^ MICROSYSTEMS

(^ MOTOROLA VERSAdos

MACRO. DCBDISK. SI

MACRO. DCBTERM. SI

MACRO. DCBPRT. SI

MACRO. DCBMTAPE. SI

for disk drivers
for terminal drivers
for printer drivers
for magnetic tape drivers

B

For a special device that does not fit in any of these categories, a new macro

must be defined. For example, a new macro was defined as follows when the

MVME300 (GPIB) driver was created:

MACRO. DCBGPIB. SI for the MVME300 GPIB driver

3.4 INITIALIZATION -- GETTING THINGS STARTED

The following paragraphs describe features with which users should be familiar

before using VERSAdos.

3.4.1 The SYSGEN System Map

The last thing in the SYSGEN print file is a map of the generated system. It

shows the various tasks and processes present in the system when booting is

complete, and the initial address where execution is to start. Refer to

Figure 3-1 for the following discussion.

FILENAME TASK PROC SEG ADDR ICB

RMS.LO RMS RMSO
RMS2

$000000
$000C00

DRVLIB.LO DRVL DRVL $005A00
TERMLIB.LO TERM TERM $005C00
ACIADRV.LO AC I

A

AC I

A

$006F00
PIADRV.LO PIAD PIAD $007200
IPCDRV.LO I PCD I PCD $007800
VM22DRV.LO VM22 VM22 $008C00
FHS.LO .FHS .FHS $009400 $00A800
lOS.LO .lOS .lOS $OOAAOO $00C400
FMS.LO .FMS .FMS $00C600 $011800
EET.LO &EET .EET

.STT

&EET

$011A00
$011000
$012000

$015E00

LDR.LO &LDR &LDR $016000 $017500
lOI.LO .101 lOSG

.101

$017700
$01C800

$01CE00

SYSINIT.LO SYSI .INT $010000

- FINAL PC VALUE = $01DA00
- START-UP ADDRESS = $010000
TOTAL NUMBER OF USER-DEFINED SYMBOLS = 232

ERRORS ENCOUNTERED

Figure 3-1. SYSGEN System Map (EXORmacs)

16 MICROSYSTEMS

(g) MOTOROLA
VERSAdos

The column TASK shows the tasks in the system at the time it is booted. The

TCB column shows the address in memory of the TCB for the task. A task's

state and priority after the system is booted are controlled by the SYSGEN

STATE and PRIORITY parameters (refer to the System Generation Facility User's

Manual)

.

Each task can be made up of one to four segments, whose names are shown in the

SEG column and whose addresses are shown in the ADDR column. The segment

names are those given by the linkage editor when building the load module used

to create the task.

Some load modules are used to create processes rather than tasks. A process

runs in supervisor mode and, therefore, has access to all system memory and

services, whereas a task runs in user mode and can access only its own

declared memory space. A process does not have a TCB. Seven processes are

shown: RMS, DRVL, TERM, ACIA, PIAD, IPCD, VM22, and SYSI. RMS is RMS68K,

which is entered by exception processing. DRVL and TERM consist of routines

common to various drivers. ACIA, PIAD, IPCD, and VM22 are all I/O device

drivers. SYSI is system initialization, entered as soon as the entire system

is booted. Note that the startup address is the beginning of SYSI. When SYSI

is completed, it JUMPs to the dispatcher to start system processing. The

memory used by SYSI is not allocated to any task, and so becomes available for

system use as soon as SYSI completes.

The addresses shown in the ADDR column are the actual addresses into which the

system is loaded as long as WHERLOAD is set to zero. For a VMOI system,

WHERLOAD is set to load the system into offboard RAM. However, the first thing

INT does is relocate the loaded system into onboard RAM, making the addresses

match. INT will then continue in the relocated code.

3.4.2 The lOI Task

When SYSI completes, and turns control over to the dispatcher, the highest

priority ready task is ".lOI". Entry is into module lOI (part of segment

.101). lOI sets the I/O system in motion. Its processing can be broken down

into the following four steps. For a more detailed description of the boot

sequence, refer to the VERSAdos to VME Hardware and Software Configuration

User's Manual

.

a. Allocate all channels. This uses the CDBs assembled in SECTION 1 of

the assembly of lOC.xxxxDRV.AG files and included as part of the .101

segment. The macro "CDS" generates the CDBs. CDBs are needed only

during I/O initialization, where they are converted into Channel

Control Blocks (CCBs) by the CMR handler when the channels are

assigned. The allocate, if successful, causes the driver to be

entered at its initialization routine.

b. Calculate (and save) various data lengths. These include the data

segment for FMS for its stack; Volume Device Tables (VDTs), File

Control Blocks (FCBs), and File Access Tables (FATs); and ASQs for

PRT, IPC, FMS, and COM.

^^ MICROSYSTEMS

® MOTOROLA VERSAdos

H

c. Declare segment lOSG shareable.

1. Grant shared access of segment lOSG to each VERSAdos system task.
2. Start each task (make ready to run).

d. Terminate task .101. Segment .101 disappears with the task
termination, but lOSG remains because it has been made shareable and
is now being used by the various I/O tasks. These tasks normally
include .lOS, .FHS, and .FMS.

3.4.3 The lOSG Segment

lOSG is section of the assembly of lOC.xxxxDRV.AG files to form the I/O
segment. It starts out as part of task .101, but is given to all the I/O
tasks (as described in the previous subsection) before .101 completes. At
label lOCOMS in the assembly is a table of pointers and values. This is at
the beginning of the module. This table is called the System Value Table
(SVT). Two sets of three pointers are of interest here:

OFFSET POINTER

SVT + $10 Start of Logical Unit Table (LUT) space
$14 End of LUT space
$18 First LUT in chain of active LUTs
$1C Start of DCB space
$20 End of DCB space
$24 First DCB in chain of active DCBs

To verify that the memory location is correct, users can check (using the
SYSANAL utility) to make sure offset $2C contains "VERSADOSREV".

3.4.4 The Logical Unit Table

Each task has an associated LUT. Active LUTs are in a chain whose head is at
the SVT+$18. SYSGEN reserves enough space for the LUT for each task (NOTASKS),
with each table having room for information about one more than the maximum
number of logical units available to each task (MAXLU). Logical unit is
reserved for system use.

Each LUT consists of a 15-byte header, followed by multiple 8-byte entries.
Each 8-byte entry corresponds to one possible logical unit. The format of the
LUT is shown in Figure 3-2.

The LUT for a particular session and task can be found by following the chain
of active LUTs, starting with the first one (pointed to by SVT+$18) and
continuing using the link pointer at offset $0 in the LUT. Users should look
for the proper taskname and session number. When they are located, the
entries for each logical unit can be examined. Unassigned logical units will
contain zero in the LUTDCB field. Also, bit LUSFAC will be zero. Other
active entries can be checked for current status in byte LUTCSF.

^® MICROSYSTEMS

® MOTOROLA VERSAdos

Bit LUSFDV indicates whether the LUT represents a file assignment or a device

assignment. If it is on, it represents a device assignment. The field LUTDCB

will point to a DCB for a device assignment and to an FCB for a file

assignment.

Symbol Offset Length Field

LUTPTR ($0) 4

LUTTID 4 ($4) 4

LUTSES 8 ($8) 4

LUTMLU 12 ($C) 1

LUTCAS 13 ($D) 1

LUTUNM 14 ($E) 2

LUTBEG 16 ($10)

LUTCAP 16 ($10 1

LUTCSF 17 ($10 1

LUTATT 18 ($11 2

LUTDCB 20 (12) 4

Pointer to next table
Taskname
Task session
Maximum number of LU entries
Number of current assignments
User number
Start of LU entries
LU entry first
Current access permission
Current status flag
Attributes of device/file
Address of connected DCB/FCB

B

Current access permission (LUTCAP)

Symbol

FOPPR
FOPER
FOPPW
FOPEW
FOPPRPW
FOPPREW
FOPERPW
FOPEREW

Value Meaning

Public read
1 Exclusive read

2 Public write
3 Exclusive write
4 Public read, public write

5 Public read, exclusive write
6 Exclusive read, public write

7 Exclusive read, exclusive write

- Current status flag (LUTCSF)

Symbol Bit Meaning

LUSFAC
LUSFIO
LUSFCP
LUSFAS
LUSFCW
LUSFDV

Active LU entry
I/O pending
Close pending
Assign pending
Connection wait
Device assignment

- Attributes of device/file (LUTAAT) - same as DCBATT

FIGURE 3-2. Format of the Logical Unit Table

19 MICROSYSTEMS

B

(g) MOTOROLA VERSAdos

3.5 COMMUNICATION BETWEEN USER TASKS AND THE I/O SYSTEM

User tasks request service from the I/O system by using either a TRAP #2 or a
TRAP #3. TRAP #3 is used to request service from File Handling Services

(FHS), which runs as task .FHS. FHS handles file and device manipulation,
such as allocation, assignment, and renaming. Refer to the VERSAdos Data

Management Services and Program Loader User's Guide for details on the types
of requests available.

TRAP #2 is used for requesting I/O operations on files or devices. These
requests are handled by Input/Output Services (lOS), which runs as task .lOS.

Refer to the same manual for details on types of requests available.

FHS and lOS are passed these two TRAPs because the tasks declare themselves

servers of the TRAPs when they start execution. After initialization, all

execution in FHS and lOS is in their Asynchronous Service Routines (ASRs).

ASR is entered when issuance of the appropriate trap causes RMS68K to place

user/server event (code 7) on the task's Asynchronous Service Queue (ASQ).

In addition, if there are more I/O requests pending for the same device, the

device driver is rescheduled by queueing an event for the first waiting
request.

At boot time, the contents of the specified boot file are loaded into memory
from contiguous disk sectors, and control is transferred to the RMS68K
initialization routine SYSINIT. The EXEC determines the end of contiguous

physical memory for each defined partition, and initializes the free memory
list to contain all memory in partition excluding that occupied by the

hardware vector table, all I/O driver processes, and the EXEC itself. All

memory assigned to partitions other than zero is also included in the free

memory list. TCBs are created and memory segments (code only) are allocated
for each system task defined by SYSGEN. The standard tasks created are .FHS,

.FMS, .lOS, &LDR, &EET, and .101. The function of each of these tasks will be

described later. After completing initialization, the EXEC starts execution
of .101. The tasks &LDR and &EET are placed on the ready list.

The function of .101 is to initialize the I/O system. The three tasks which
comprise the I/O system are .FMS, .FHS, and .lOS. The necessary data segments

and ASQs are allocated by .101, all defined I/O channels are allocated, the

I/O system tasks are started, and .101 terminates, causing all memory
allocated to its code and data segments to be returned to the free memory
list.

When .lOS begins execution, it attempts to issue a Configure request to the

driver of each device to initialize the current device configuration to match

the default device configuration. If the Configure request results in an

error, the default configuration, defined by SYSGEN, is assumed to be

unreliable and the DCB for the device is marked offline, preventing any I/O

from being performed on the device. This action prevents the operation of

other devices from being corrupted by the actions of a driver operating on

faulty configuration data. After completing internal initialization, .lOS

makes the necessary EXEC calls to establish itself as a system server task for

TRAP #2 and enters wait-for-event state.

2° MICROSYSTEMS

(g) MOTOROLA
VERSAdos

When .FMS begins execution, it attempts to read sector of each disk device

to determine whether it is a VERSAdos disk, a foreign disk, or offline. The

volume name of each VERSAdos disk is entered in an internal table, and .FMS

calls .FHS to make an exclusive read/write assignment on the disk device

corresponding to each volume. .FMS then enters the wait-for-event state. The

.FMS initialization process will be described in more detail later.

When .FHS and &LDR begin execution, they each perform internal initialization

and make calls to the EXEC to establish themselves as system server tasks for

TRAP #3 and TRAP #4, respectively. Both tasks then enter wait-for-event

state. The initialization performed by &EET when it begins execution will be

described later.

The only element of the device I/O mechanism not described thus far is the I/O

driver process. A process is defined as an extension of the EXEC that

operates in the supervisor mode of the MC68000. Running in supervisor mode,

the driver is not subject to preemption or time-slicing as a task would be.

Another advantage is that the memory management unit (if any) is disabled in

supervisor mode so that the driver has direct access to the address spaces of

all tasks, system tables, and I/O devices. However, because the driver, by

nature, suspends execution of all tasks when it is executing, its execution

time must be kept to a minimum or the system throughput will be severely

degraded. Each device driver has three major components: initialization,

command service, and interrupt service.

The driver initialization routine is called when an Allocate Channel (TRAP #1)

request is made to the CMR handler. The information passed in the parameter

block for this call includes the hardware interrupt level, hardware interrupt

vector number, and a software priority. The CMR handler uses this information

to create a CCB. The device- independent portion of the CCB is initialized by

the CMR handler. Before allocating the CCB, the CMR handler makes sure, by

attempting to read the physical byte address specified in the CDB, that the

memory mapped I/O addresses specified for the channel can be accessed. If

not, an error is returned to .lOS. Each CCB is part of an interrupt vector

chain. The start of each chain is the address stored in the CCB-specified

hardware interrupt vector number. This address points to an instruction

within the CCB of the highest software priority of all the CCBs with the same

vector number. Other CCBs for that vector number are added in order of

decreasing software priority to form a linked list with the first CCB in the

chain. Then the driver initialization routine executes. Its function is to

perform hardware initialization of the device and to set up housekeeping in

the device-dependent portion of the CCB. After this is done, the driver

returns to the CMR handler.

The driver command service routine is called when an Initiate I/O {TRAP #1)

request is issued by .lOS. As mentioned earlier, one of the parameters passed

to the CMR handler and, subsequently, to the driver is the address of the

lOCB. All validation of data contained in the lOCB (excluding logical -unit-

related data) is the responsibility of the command routine.

^^ MICROSYSTEMS

(^ MOTOROLA VERSAdos

B

One of these checks is to verify that the specified I/O buffer starting and

ending addresses are contained within the address space of the proper task.

In most cases, the proper task is the owner of the lOCB (i.e., the task that

issued the TRAP #2); but this is not the case if lOCB option bit 15 is set.

This option bit (marked as reserved in user documentation) extends the normal

lOCB by eight bytes, which contain the task and session number of the buffer
owner. Use of this option is necessarily restricted to system tasks because a

more general usage would allow one task to read or write to another task's
address space without prior consent. (Note: This option is currently used by

.FMS to make disk I/O requests on behalf of a task that requested file I/O,

causing data to be transferred directly to or from the second task's buffer.)
If IOCS errors are detected, the appropriate error status is written in the

lOCB, and the driver returns to the CMR handler. If no errors were detected
in the lOCB, the driver initiates the I/O on the device, enables I/O

completion interrupts, and returns to the CMR handler. The command service
routine should perform all non-interrupt sensitive operations with the

processor mask set to zero.

^^ MICROSYSTEMS

® MOTOROLA THE DRIVER

CHAPTER 4

THE DRIVER

4.1 INTRODUCTION

It is the intention within an operating system to keep all references to I/O
devices logical rather than physical for as long as possible. When the time
comes to make the transition from logical to physical, I/O device drivers are
required. I/O device drivers are the software modules that actually handle
the physical I/O device. It is at this level that the operating system has to
take into account the peculiarities of the peripheral chips. This chapter
details the structure and nature of I/O device drivers (i.e., handlers) that
must be observed in order to run under RMS68K and/or VERSAdos.

4.2 INTERRUPTS AND THEIR HANDLERS

What happens when an interrupt occurs? Answering this question requires
knowledge of the relevant data structures as they have been set up for use by
factors such as system initialization.

Considering the CDB first, there are three pertinent parameters:

. the channel driver's physical address

. the hardware interrupt vector number

. the software priority

When the I/O Initializer (lOI) runs, it calls the CMR handler to create
Channel Control Blocks (CCBs) from Channel Data Blocks (CDBs); it collects all
CCBs having the same hardware interrupt vector number and orders them into a
chain based on software priority. The CCB with the highest software priority
is placed first in the chain and so on down to the lowest software priority.
At this point, there are several ordered chains of CCBs: one chain for each
of the hardware interrupt vector numbers used in the particular system (auto
vectors or user vectors). lOI also places in the MC68000 vector table, at the
position of each hardware interrupt vector, the address of the middle of the
CCB occurring at the head of the CCB chain for that hardware interrupt vector.

CMR places in the middle of each CCB a Jump-to-Subroutine (JSR) instruction to
the CMR interrupt handler, with the JSR at the head of each CCB chain having
its JSR to the CMR interrupt handler pointed to by the entry in the MC68000
vector table. Figure 4-1 diagrams CCB chaining. It should be noted at this
point that any of the CCBs shown in Figure 4-1 could be a supervisor CCB. In
this case, the supervisor CCB would point to the first of its subordinate CCBs
which would point to yet further subordinate CCBs. Refer to the discussion on
supervisor and subordinate CCBs which appears in Chapter 2 ("Channel Types").

When a hardware interrupt occurs in an MC68000-based system, the MC68000
Program Counter (PC) is pushed onto the supervisor stack and loaded in its
place with the location found in the vector table for that interrupt. The
status register is also pushed onto the supervisor stack.

^^ MICROSYSTEMS

(g) MOTOROLA
THE DRIVER

c
H

^
u

1

U

CO

e
t. 1-3

Th
1

U
'^>

« 1

> 1

tN 1

a
3

• (

i
V4 1 J
M OQ

S) U 1 i
P U 1

C 5

TX T
JS

1

u '-^

1

e

1

i

IS

(

g
£ ' J
U

ffl (X
09 L 1 /3

CJ L >3
u

' 1

C

a
o
OS
CO
1-5

1

cv
1

PS s
CJ

CC »
c. en

u ^^

'

c

c
c

g
s u
M 03

o
u

K
cn
1-5

e *
1

4J
^1

1u

^
1

p (N i ega !
c

9 e cJ
h
k4 OS
0) a 10
P u 1-3

e o

> \V 1A s
h 1

1

<u
HIT

e
•H
10

e
^

JS u
u

01 OS
03 u M
U y 1-3

u
i

1

J

H

•H
u
a,

I
u

e
H
U
Id

0)

u
o
c
•H

s.
<u

c
ro

O
CU

73
C

OO

S.
i-

c
o

c
0)

0)
s.
a.
O)
a:

24 M/CffOSySTEMS

@) MOTOROLA THE DRIVER

This new PC value points into the middle of the first CCB on the chain for
that interrupt vector. The JSR instruction found at this position In the CCB
transfers control to the CMR interrupt handler. The CMR interrupt handler
traces the interrupt if interrupt tracing is on, and then performs a minimal
MC68000 state save consisting of AO, Al, A5, and DO. The CMR interrupt handler
pulls the return address off the stack and uses this address to calculate the
address of the CCB responsible for initially calling it. It gets the address
of the driver associated with that CCB (from the CCB itself) and does a JSR at
the interrupt entry point of the driver, with A5 now pointing to the CCB.

The driver's first task is to determine if the device it controls is
responsible for the interrupt. If this driver's device is responsible, the
interrupt is handled. When the driver is done, it sets the carry bit and
returns to the CMR handler. If, however, the interrupt was not from this
driver's device, the carry bit is cleared and a return to the CMR handler is
issued. The CMR handler then checks the carry bit. If it is clear, the
interrupt has not been handled. The CMR handler must then walk one link in
the CCB chain if not already at its end, and again enter the CMR interrupt
handler, but from the next CCB. Walking the CCB chain continues until the
interrupt is handled or the CMR handler finds itself at the end of the chain.

Either way, the CMR handler restores the saved state and exits through the
common interrupt handler. The common interrupt handler deals with the
interrupt in one of two ways:

a. If no interrupt was pending before this one, the handler jumps to the
dispatcher.

b. If an interrupt was pending prior to this one, the handler will service
it.

The faster a device's interrupt must be handled, the higher software priority
required by the CCB for that device.

4.3 THE 4-ELEMENT STRUCTURE FOR A DEVICE DRIVER

To write and incorporate a driver into RMS68K/VERSAdos in the standard way, it
must conform to the standard driver format, which consists of four elements.
These four elements, listed below, are described in the following paragraphs.

. Vector table and revision information

. Initialization routines

. Command service routines

. Interrupt service routines

D

25
MICROSYSTEMS

D

(g) MOTOROLA THE DRIVER

4.3.1 The Vector Table

The first 16 bytes of the device driver comprise the driver vector table. The

first 4-byte vector must be the address of the Driver's Interrupt Service

Routine (DISR), the second 4-byte vector that of the Driver's Command Service

Routine (DCSR), the third 4-byte vector that of the Driver's Initialization

Routine (DIR), and the final 4-byte vector is reserved. A further 16 bytes

offer space for other CMR software parameters. Only the first byte is

currently in use; it is used to increase the size of pages used for the CCB.

These extra pages can be used as driver scratchpad RAH. Driver revision

information can be included after the initial 32 bytes. This revision

information is not required by the CMR handler, although its inclusion is

recommended in case there is some confusion regarding the revision of a

particular driver being used in the system. The layout of the vector table

fol 1 ows

.

**
* This is the service vector table used by the Channel Management Request
* (CMR) handler to calculate entry points to the driver. The three entry
* points are as follows:
*

* 1. Interrupt - The CMR handler calls the driver at this entry
* point for each CCB in a specific hardware vector
* chain that is serviced by the driver until the
* interrupt is claimed.
*

* 2. Command - Called by the CMR handler whenever an INITIATE
* I/O channel command is received from lOS or
* another task. After an I/O operation is started,
* control is usually returned to the CMR handler
* pending receipt of an interrupt from the device.
*

* 3. Initialization - Called by the CMR handler whenever a channel is
* allocated to allow the driver to initialize any
* device or devices associated with that channel.
*

* The service vector table must reside in the first 16 bytes of the driver
* starting with the SYSGEN-defined driver origin. The vectors must be long
* words in the order of interrupt, command, initialization, and reserved.
* The vectors are specified as offsets relative to the driver origin address
* to allow relocation of the driver without reassembly or relinking.

**

26 MICROSYSTEMS

® MOTOROLA THE DRIVER

DEVDRVR:
DC.L DEVISR-DEVDRVR Self-relative interrupt service address

DC.L DEVUSER-DEVDRVR Self-relative command service address

DC.L DEVINIT-DEVDRVR Self-relative initialization service address

DC.L Reserved

The following 16 bytes are reserved for use as channel allocation
parameters by the CMR handler. Only the first byte is currently used.

DC.B CCBEXTRP

SPC 2

DC.B 0,0,0
DC.L 0,0,0
SPC 2

This parameter specifies the number of

additional contiguous pages of memory

(256 bytes/page) to be assigned to each CCB

when each channel connected to the driver
is allocated by the CMR handler. The number

of pages allocated to the CCB is always the

value of this parameter plus one, so a

minimum of one page is always allocated.

An additional 15 bytes are reserved for

future use by the CMR handler.

DC.L Optional revision information.

4.3.2 The Initialization Routine

The initialization routine is the second of the four elements that make up a

standard device driver. This is the code section of the driver that is

entered by the CMR ALLOCATE routine (in VERSAdos, the lOI task calls the CMR

handler to allocate all channels). After a channel is established by the CMR

handler, the I/O handler (the driver) is given a chance to do some

initialization processing before normal execution resumes.

The calling sequence:

ENTRY: (SS) = Return PC into CMR handler
AO = Entry point for this routine
A5 = CCB base address

EXIT: Must exit with RTS instruction

Only application-independent code must be executed in this routine (e.g., an

initial device reset or a setting up of driver tables). If an I/O device is

required only in a very specific way, the device setup or programming

information could be coded and executed here. However, functions accomplished

by this routine should not restrict the use of the driver. The initialization

routine usually performs little action.

27 MICROSYSTEMS

(^ MOTOROLA THE DRIVER

D

4.3.3 The Command Service Routine

This section of the driver performs most of the driver's work. The command
service routine consists of a list of commands supported by the driver for
each command. It is here that the actual I/O Is Initiated. The command
service routine handles the INITIATE I/O, HALT, and RESET commands to start or
terminate the necessary physical I/O.

The calling sequence:

ENTRY: (SS) - Return PC Into the CMR routine
4 (SS) = Requester's TCB
8 (SS) = Status register for exit routine
10 (SS) = PC of exit routine
14 (SS) = Exit code
16 (SS) - Requester's status register
18 (SS) = Requester's PC

AG - Self A2 = Physical address of requester's Parameter
Block, either INITIATE I/O or HALT or RESET.

A5 - CCB Address
A6 - Requester's TCB address

EXIT: Must return with RTS instruction
00 - Status value
A6 - Requester's TCB address

The INITIATE I/O command contains a pointer to the user's I/O parameter block.
It Is this parameter block that contains the commands specific to the driver,
such as Read, Write, Configure, and Format.

For VERSAdos drivers these parameter blocks are described in the Data
Management Services and Program Loader User's Manual.

For RMS68K drivers, the parameter block structure is unique for each driver.

4.3.4 The Interrupt Service Routine

This Is the final element of the driver. It is at this routine that entry is

accomplished in order to try to handle an Interrupt (refer to the paragraph
"Interrupts and Their Handlers" in this chapter). The first job of this
routine is to establish whether the current Interrupt came from the device
whose driver this Is. If ownership is not established, the routine returns to
the CMR handler. However, If ownership is established, this section of the
driver must handle or service the Interrupt. Ownership of the Interrupt is

flagged to the CMR handler by writing the carry bit as follows:

carry - 1, Interrupt serviced by this driver
carry - 0, this driver does not own this Interrupt, try another driver

^® MICROSYSTEMS

(^ MOTOROUA THE DRIVER

Because an I/O driver can accept interrupts directly from the device it

controls, the EXEC relies on the handler to follow strict programming protocol

so that system performance is not degraded. It is suggested that I/O handlers

run at device priority only long enough to handle the cause of the interrupt,

then lower the priority level by one and continue processing.

The calling sequence is as follows:

ENTRY: (SS) = PC of CMR return
4 (SS) = CCB address
8 (SS) = Register save A0-A2/D0

24 (SS) = PC of location after JSR instruction in CCB
28 (SS) = Status register at interrupt line
30 (SS) = PC at interrupt time

AO = Work register
Al = Self address
A5 = CCB address
DO = Work register

EXIT: Must exit with RTS instruction
Must set or clear carry bit
All registers except AO, Al, A5, and DO must be preserved

All I/O handlers will exit with an RTS instruction. The RTS will return to

the common interrupt handler for possible preemptive processing. Figure 4-2

illustrates the driver structure.

VECTOR TABLE
AND

REVISION INFORMATION

INITIALIZATION
(CALLED WHEN CHANNEL IS ALLOCATED)

COMMAND SERVICE
(CALLED WHEN RESET, HALT I/O, OR INITIATE

I/O PARAMETER BLOCK RECEIVED)

INTERRUPT SERVICE
(CALLED WHEN AN INTERRUPT OCCURS ON THE INTERRUPT VECTOR)

Figure 4-2. Structure of a Driver

^^ MICROSYSTEMS

(M) MOTOROLA THE DRIVER

D

4.4 EQUATE FILES: lOE, TRl. TERMCCB. CCB, TCB

Several equate files are included with VERSAdos and RMS68K to provide a naming
standard for the various data fields. The names and a description of these
files are given below. These files are usually included but not listed at the
head of utilities, applications software, and drivers.

. lOE - This file contains all the required equates and a variety of
macros for the I/O system, the TRAP #2 handler Input/Output
Services (lOS), and the TRAP #3 handler File Handling Services
(FHS).

. TRl - This file contains the equates for the EXEC TRAP #1 calls. A

TRAP #1 call macro is also included.

. TERMCCB - This file contains all the device-dependent fields that relate
to all serial port drivers. These fields are used by TERMLIB
and by any serial port device driver that uses TERMLIB. The
label marking the end of the generic terminal -dependent fields

is TERMDDP.

. CCB - This file contains equates for the device-independent part of
the CCB. Other descriptive equates about channels are also
given.

. TCB

These files
important.

- The Task Control Block equates can be found here.

can be included at the head of programs; their order is not

4.5 OBTAINING EXTRA MEMORY FOR THE DRIVER

The driver software may reside in system RAM or ROM. This choice of
environment affects the way a driver can obtain memory for itself. The
simplest and the preferred method is to request additional pages of CCB.

These additional pages can then be used to maintain tables required by the
driver and as scratchpad memory for the driver. Not all of the default page
CCB may be defined, which may provide sufficient driver memory without
additional pages. Using the CCB memory method ensures that the driver can be

programmed into ROM. A second method to provide memory is to use the PAGEALOC
TRAP #0 directive from the driver. This allows the driver to use a named
memory segment as memory for itself (refer to Appendix B). This method also
enables the driver to be programmed into ROM. A third memory acquisition
method simply involves the driver declaring its own memory requirements within
itself. However, this implies that the driver is located in a writable memory
area, which may not always be desirable.

30 MICROSYSTEMS

(M) MOTOROLA THE DRIVER

4.6 DRIVER CALLS TO RNS68K (TRAP #0)

Because drivers are processes, they run in supervisor mode of the MC68000. As
such, TRAP #1 calls are not allowed. Therefore, to obtain various operating
system services, a driver must use the TRAP #0 EXEC calls. The services made
available to a process through TRAP #0 calls are listed below, and a full

description of each function is provided in Appendix B.

EXROPA

An Executive procedure may be scheduled or descheduled for activation on a

periodic basis.

EXQEVENT

An I/O event may be queued to its associated task. The READY function,
described below, is implicitly included.

PAUSE

While waiting for the completion of an I/O operation, an Executive procedure
may relinquish its allocated time.

READY

An Executive procedure may change the state of a task from DORMANT to READY,
in preparation for reactivation in accordance with the task's elected
notification method. The READY function is implicit in both EXQEVENT and in

WAKEUP.

WAKEUP

A task may be reactivated upon completion of a requested service. The READY
function, described above, is implicitly included.

FNDGSEG

The address of a shared local or global memory segment may be retrieved from
the Global Segment Table (GST) maintained by the operating system.

FNDTSEG

The address of a user or system task segment may be retrieved from the Task
Segment Table (TST) maintained for each running task.

GETTCB

The address of a Task Control Block may be retrieved from the TCB table
maintained by the operating system.

^^ MICROSYSTEMS

(^ MOTOROLA THE DRIVER

D

LOGPHY

The logical address of a memory segment may be converted to its physical
address.

PA6EAL0C

One or more pages of physical memory may be allocated to a task.

PAGEFREE

Page(s) of physical memory may be deallocated.

FNDUSEM

A task-associated semaphore may be located on a matching name basis or by

association with the specified task.

PVSEM

A request for exclusive use of a resource may be queued or dequeued.

RDTIMER

The time of day may be read and returned.

KILLER

The cause of system trouble may be saved and the system deliberately crashed.

RMS68K TRAP #0 Call Summary

In the general course of events, a driver would use only a few of these calls,
such as the queue-event call EXQEVENT, the logical -to-physical -conversion call

LOGPHY, the allocate-memory-page call PAGEALOC, and the get-task-control -block
call GETTCB.

The EXQEVENT queue-event call is used by the driver to queue a completion
event to either lOS or the user task, depending on who called the driver.
This is the standard exit from the driver's command service routine on
completion of an I/O request.

The logical -to-physical -conversion call LOGPHY is used by the driver to
convert a supplied logical address to an absolute physical address.

The allocate-physical-page(s)-of-memory call PAGEALOC is used to allocate one
or more pages of physical memory to the task.

The get-task-control -block call GETTCB is used to obtain the address of a

task's TCB from the TCB table.

^^ MICROSYSTEMS

(^ MOTOROLA I/O WITH RMS68K

CHAPTER 5

I/O WITH RMS68K

5.1 INTRODUCTION

This chapter discusses the mechanisms of I/O requests under RMS68K and lists a

procedure for the steps required to SYSGEN a new driver into RMS68K.

5.2 EXECUTION OF AN I/O REQUEST WITHOUT USING lOS

The main difference between I/O requests with Input/Output Services (lOS) and

those without is in the absence of the Data Control Block (DCB) in RMS68K
situations. In addition, drivers running under RMS68K are faster than their
counterparts running under VERSAdos, due to the absence of lOS. However, the
user has a lot more to do when using RMS68K drivers and must be more careful.
At this point, it must be stressed that drivers written to run under RMS68K
will also run under VERSAdos, but the converse is not true.

The first step the user must take in a request for I/O is to prepare a CMR
Initiate I/O Parameter Block (IIPB) which points to the correct data buffer
(see Figure 5-l(a)). A TRAP #1 call is then issued with D0-60 to invoke the
CMR handler. The CMR handler identifies the required Channel Control Block
(CCB) and does a JSR into the driver (see Figure 5-1 (b)). The driver inherits
the pointers to IIPB and the CCB, and performs the requested I/O function
(see Figure 5-l(c)). After completing the I/O request, the driver either
queues a completion event to, or wakes up, the user task (see Figure 5-1 (d)).

Because the DCB structure is nonexistent for a basic RMS68K system, this
information, if required, can be given to the driver in the device-dependent
portion of the CCB.

When RMS68K driver command service routines encounter any errors that prevent
initiation of the required I/O, the driver should put an error code in DO

before returning to the CMR handler. If the associated parameter block
contains a status field, the same error code should be put there also. The
CMR handler will set the Z bit condition code of the status register to

reflect the value of DO: indicates acceptance of the parameter block and

that I/O was started; nonzero indicates an error and that no I/O was started.
This convention allows users to do a Branch-Equal to a good return or a

Branch-Not-Equal for an error return. This is used with all RMS68K TRAP #1

calls.

^^ MICROSYSTEMS

® MOTOROLA

t~ t- i^
UJ z ~

^ uj :
a. >
5""

^i i^l

B
n

L.

--1

.J

&:

r"

L.

in

r"

L.

in

H

._j

a:
LU

o

CMR 1^

a:

USER

T
IIP

r

Lu

-J CO

00o

c
in

(U
3
cr
(U

CO

u
X

Of

L-

n

34 MICROSYSTEMS

(M) MOTOROLA I/O WITH RMS68K

5.3 A DRIVER ADDITION ALGORITHM FOR SYSGENING RMS68K DRIVERS

An RMS68K driver may also be referred to as a process control driver.

Adding a driver to RMS68K requires three main steps: adding the driver code

itself; adding the Channel Data Block (CDB) information, together with the I/O

Channel initializer task; and adding code to the system initializer process if

the driver requires memory for itself in the SYSPAR region of low memory.

The following paragraphs describe a step-by-step procedure for adding a new

RMS68K driver to VERSAdos.

During this process, several new files must be created, as described in the

list below. In this list, xxxxDRV is the name of the driver, where xxxx

designates the module number for Motorola module products. For example, the

file 9992.&.M610DRV.SA is the source file for the MVME610/620 analog-to-

digital converter module.

NOTE

Conventions have been established for the use of the filename exten-

sions .SA, .AG, .CI, .LG, .AF, and .SI, used by the SYSGEN files.

Refer to the System Generation Facility User's Manual for details.

The following files must be created. Appendix F contains examples of these

files.

B
FILENAME

9992.&.XXXXDRV.SA

9992.&.XXXXDRV.AF

9992.&.XXXXDRV.R0

9992.&.XXXXDRV.LG

9992.&.XXXXIOC.SI

9998.VERSAPT.XXXXDR.V.CF

9992.&.XXXXDRV.CI

9992.&.XXXXMEM.CI

9992.&.XXXXMEM.AG

9998.C0PYGEN.xxxxDRV.CF

DESCRIPTION

Source file for the driver.

Assembly chainfile for the driver. This file

should include comments listing any INCLUDE

files called in by the driver.

Relocatable object file for the driver. Created

by the command =CHAIN &.xxxxDRV.AF.

Link file for the driver.

File which contains CDBs for the driver.

Patch file for the driver.

INCLUDE file for SYSGENing in the driver.

INCLUDE file for bringing in the memory

allocation module.

Memory allocation module (contains code to

allocate memory).

Chainfile for copying driver files into a user

number where SYSGEN is to be performed.

35 MICROSYSTEMS

® MOTOROLA I/O WITH RMS68K

B

Also, several existing files must be modified. In the following list, which
describes them, <system> refers to the catalog name for the target system.
For example, the MVMEllO target system files are under the VMEllO catalog
name, and the VME/10 target system files are under the VMESIO catalog name.

The following files must be modified:

FILENAME DESCRIPTION

9998.<system>.CNFGDRVR.CI Switch file of modules in the system.

9998.<system>.IFDRVR.CI Conditional file to bring in &.xxxxDRV.CI.

9992.&.PCDRV.CI Conditional file based on switch values in

<system>.CNFGDRVR.CI to bring in the file
&.XXXXMEM.CI.

9998.<system>.C0PYSGEN.CF Chainfile to copy all files for a system
SYSGEN into a particular user number.

9998. IOC. ADDRESS. CI I/O Channel address offsets (base address
depends on system)

.

9992.&.I0CINT.AG File which contains CDBs.

The procedure for loading a new driver into the operating system is listed
below. Refer to Appendix F for examples of the files created or modified
during each step.

a. Create files &.xxxxDRV.SA, &.xxxxDRV.AF, and &.xxxxDRV.RO.

Write the I/O driver code so that it conforms to the 4-element
standard driver structure. Using a similar type of RMS68K driver as a

model, create the source file, assembly chainfile, and relocatable
object file.

b. Create the file i.xxxxDRV.LG.

This is the file that links the driver into the system.

The following SYSGEN commands:

SUBS &.XXXXDRV.LG
LINK &.XXXXDRV.LG

are found in the file &.xxxxDRV.CI.

^^ MICROSYSTEMS

® MOTOROLA I/° "^™ '^"S^SK

The link file for SYSGEN should have a command line such as the

following for the linker:

=LINK ,&.xxxxDRV.LO,\LINKLS;<options>
SEG xxxx:nn \xxxxDRV
INPUT &. xxxxDRV.ro
INPUT <any other files needed>
END
=END

The MVME600 modules, for example, must be linked with &.SYSPAR.RO.

For a guide to comments and options, refer to the driver model or to

Appendix F.

c. Create the file &.xxxxIOC.SI.

In the file &.xxxxDRV.CI is the SYSGEN command

SUBS &.XXXXIOC.SI

which will create a new file called &.XxxxxIOC.SI. This new file will

substitute the defined SYSGEN parameters with their values wherever
they occur in xxxxIOC.SI.

The file &.XxxxxIOC.SI is included in the file &.IOCINT.AG if the

switch for the driver is set in the <system>.CNFGDRVR.CI file.

&. xxxxIOC.SI contains the CDB setup information for the module. The

CDB macro (refer to Appendix D) should be used at this point in the

procedure.

d. Create the file VERSAPT.xxxxDRV.CF.

This is the patch file for the driver.

e. Create the file &.xxxxDRV.CI.

This is the file that will bring the driver and its device
configuration into the system. A conditional assembly in

<system>.IFDRVR.CI will bring it in if the appropriate switches in

<system>.CNFGDRVR.CI have been set.

&.XXXXDRV.CI performs the SUBS command on the file xxxxIOC.SI, and the

SUBS and LINK commands on the file xxxxDRV.LG. It also appends the

file VERSAPT.xxxxDRV.CF to the file <system>.VERSAPT.CF.

D

^^ MICROSYSTEMS

@) MOTOROLA I/O WITH RMS68K

B

f. Create the files &.xxxxMEM.CI and &.xxxxMEM.AG.

Most process control drivers require some memory allocation at system

initialization time. If one of the process control module switches

has been set, then the PCDRV switch will be set (in xxxxDRV.CI), and

the file &. PCDRV. CI will be pulled into the system within the file

&.SYSINIT.CI. For each process control module whose switch is set,

the file &.xxxxMEM.CI will be included. Within the file &.xxxxMEM.CI

are commands to assemble the file &.xxxxMEM.AG.

As each .RO module is created, it is linked into a temporary .RO file.

When all .RO files are linked together, a final link creates the file

<system>.SYSINIT.LO.

One of the process control drivers should be used as a model.

g. Create the file COPYGEN.xxxxDRV.CF.

This file will be included in <system>.COPYSGEN.CF for each system

that can use the driver. It allows easy access to all the SYSGEN

files pertaining to the driver.

h. Modify the file <system>.CNFGDRVR.CI.

This is a switch file that allows users to select the modules to be

included in the system.

i. Modify the file <system>.IFDRVR.CI.

This is a conditional assembly file, based on the switches set in

<system>.CNFGDRVR.CI, to include &. xxxxDRV.CI if the module is to be

used in the system.

j. Modify IOC. ADDRESS. CI.

Choose the address of a readable register on the module, because this

is the address that is read during boot to determine if the module is

there. Also, this is the address that the driver looks for at the

CCBCHB offset in the CCB when accessing the device.

k. Modify &.IOCINT.AG.

This file contains the CDBs for the process control drivers. In

&.IOCINT.AG there are conditional assemblies, based on the switch

settings in file <system>.CNFGDRVR.CI, to bring in the file

&.XxxxxIOC.SI.

^^ MICROSYSTEMS

(^ MOTOROLA I/O WITH RMS68K

1. Modify the file &.PCDRV.CI.

This file contains the &.xxxxMEM.CI files for memory allocation. The
&.PCDRV.CI file has conditional assemblies based on the status of
switches in the <system>.CNFGDRVR.CI file. These conditional
assemblies cause the appropriate &.xxxxMEM.CI file to be included for
each process control module for which a switch is set (refer to step
f.).

m. Modify <system>.COPYSGEN.CF.

This is the chainfile that copies to a designated user area all the
files needed for a SYSGEN for the target system. This chainfile
includes the COPYGEN.xxxxDRV.CF file if the system is to use the
module.

5.4 MAP OF INCLUDE FILES IN SYSGEN FILES (WITH PROCESS CONTROL DRIVER)

The following is a list of INCLUDE files used during the process of SYSGENing
a new driver into RMS68K.

.VERSADOS.CD:

INCLUDE <system>.RMS.CI
INCLUDE &.DRVLIB.CI
INCLUDE &.TERMLIB.CI
INCLUDE <system>. SYSTEM. CI
INCLUDE &.CNFGTASK.CI
INCLUDE &.VALPAR.CI
INCLUDE <system>.CNFGDRVR.CI
INCLUDE <system>.IFDRVR.CI
INCLUDE &.IOCGEN.CI
INCLUDE &.IFTASK.CI
INCLUDE &.IOI.CI
INCLUDE &.IOCI.CI
INCLUDE &.SYSINIT.CI

<system>. SYSTEM. CI:

INCLUDE SIO.ADDRESS.CI
INCLUDE IOC. ADDRESS. CI

<system>.IFDRVR.cr:
INCLUDE &.XXXXDRV.CI

&.IFTASK.CI:
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

FHSIOS.VERSADOS.CI
FMS.VERSADOS.CI
EET.VERSADOS.CI
MMULDR.VERSADOS.CI
NOMMULDR.VERSADOS.CI

(for MMU systems)
(for non-MMU systems)

39 MICROSYSTEMS

© MOTOROLA I/O WITH RMS68K

B

&.XXXXDRV.CI:
&PCDRV = \&PCDRV+1
SUBS &.XXXXIOC.SI
SUBS &.XXXXDRV.LG
LINK &.XXXXDRV.LG
PROCESS &.XXXXDRV.LO
END &.XXXXDRV.LO

& .lOCI.CI:
TASK &.IOCI.LO
SUBS &.IOCINT.AG
ASM &.IOCINT.AG,&.IOCINT.RO,\ASMLS;Z=100
SUBS &.IOCINT.LG
LINK &.IOCINT.LG
END &.IOCI.LO

&.IOCINT.AG:
INCLUDE XxxxxIOC.SI

&.SYSINIT.CI:
INCLUDE &.PCDRV.CI

&.PCDRV.CI:
INCLUDE Si.xxxxMEM.CI

&.XXXXMEM.CI:
SUBS &.XXXXMEM.AG
ASM & . xxxxMEM . AG , NEW . RO ,

\ASMLS
INCLUDE &.ROGEN.CI

&.ROGEN.CI:
LINK &.ROGEN.LG

40 MICROSYSTEMS

® MOTOROLA I/O WITH VERSAdos

CHAPTER 6

I/O WITH VERSAdos

6.1 INTRODUCTION

This chapter describes the mechanisms of I/O requests under VERSAdos and 1

"

the steps required to SYSGEN a new driver into VERSAdos.

6.2 EXECUTION OF AN I/O REQUEST USING lOS

What follows is a description, in both words and pictures, of I/O execution
using lOS. This procedure is applicable only in a VERSAdos environment.
Refer to Figure 6-1 during the following discussions.

After deciding to perform I/O, the user must first set up an lOS I/O block
(lOCB). The lOCB points to the user's buffer. This buffer will contain the
data to be written or will be where the data will be put for a read. The user
task then issues a TRAP #2 to lOS (see Figure 6-l{a)). lOS then takes control
for the second step of the process. lOS prepares an Initiate I/O Parameter
Block (IIPB) which will point back to the user's task lOCB and also to the
Device Control Block (DCB) for the required I/O device. lOS then does a TRAP
#1 call to the CMR handler (with D0=60); see Figure 6-l(b). The CMR handler
identifies the Channel Control Block (CCB) and, using a JSR instruction, moves
control to the device driver (see Figure 6-l(c)). The driver inherits the
pointers to IIPB and the CCB, and performs the requested I/O function in its
command service routine, shown in Figure 6-l(d). After completing the I/O
request, the driver updates the lOCB and queues a completion event to lOS (see
Figure 6-l(e)). lOS then performs an acknowledge request (AKRQST) to the
calling user task or queues an event to it, depending on the WAIT/PROCEED mode
selected by the user in the lOCB (see Figure 6-l(f)).

Parameter block error reporting in VERSAdos drivers is handled by queuing an
event to the requester of the I/O.

6.3 A DRIVER ADDITION ALGORITHM FOR SYSGENING VERSAdos DRIVERS

This paragraph relates to I/O drivers that are entered using lOS (TRAP #2)
under VERSAdos. A step-by-step procedure for adding a new driver to VERSAdos
follows. Figure 6-2 provides an overview of this procedure.

During this procedure several new files must be created, as described in the
list which follows. In this list, xxxxDRV is the name of the driver, where
xxxx designates the module number for Motorola module products, whenever
applicable. For example, the file 9993.&.M435DRV.SA is the source file for
the magnetic tape driver on the MVME435 magnetic tape adapter module.

^^
MICROSYSTEMS

(M) MOTOROLA I/O WITH VERSAdos

B

i-i—

I

L.

zn

r"

L.

.z

^^

"Z

^i

-p^

l^i

"Z

|2

X^

U^^

L.

:z

.z

-p^

-[?s

"Z

|2

^ZT

u^^

L. .Z L-

Z
Z

-Z

a:
Ui

r8 Ih^§

U^ Z M-

lar-^1 ___ M
00

L Zs »-H

U—
l

•t

=3

Y
s K .—J +->

00

g L
3

1

0)
3

1
1

0)

1—

t

<0

en

,
c
u

£
3

i
a: K-

0)
X

1— =
1 UJUJ

LlJ

1
"

1—

t

1

I l-c^i
C9

i 1 -'

z
Ll.

M—
I
OS

TAS

IIPB

Lf'r
0)

: L - z
c

4-- 1

1

ti Ll.

3

1

1

|3 l:

1

—
• - 1

z

42 M/CffOS/STEMS

(^ MOTOROLA I/O WITH VERSAdos

Miorosysioms 08 Mar. "85

" on 5-1/4" or 8" floppy only

" user number 9991 is reserved for it

" assume volume name" IDR:

* run chain file on floppy to install

nard disk »nere master sysgen

files are kept

FIGURE 6-2. Overview of Driver Installation into VERSAdos

43 MICROSYSTEMS

® MOTOROLA I/O WITH VERSAdos

NOTE

Conventions have been established for the use of the file-
name extensions .SA, .AG, .CI, .LG, .AF, and .SI, used by
the SYSGEN files. Refer to the System Generation Facility
User's Manual for details.

The following files must be created. Appendix F contains examples of these
files.

B

FILENAME

9993.&.XXXXDRV.SA

9993.&.XXXXDRV.AF

9993. &. xxxxDRV.ro

9993.&.XXXXDRV.LG

9998.I0C.xxxxDRV.AG

9998 . VERSAPT . xxxxDRV . CF

9993.&.XXXXDRV.CI

9998.C0PYGEN.xxxxDRV.CF

DESCRIPTION

Source file for the driver.

Assembly chainfile for the driver. This
file should include comments listing any

INCLUDE files called by the driver.

Relocatable object file for the driver.
Created by the following command:
=CHAIN &.XXXXDRV.AF.

Link file for the driver.

Sets up the DCBs and CDBs for the driver.

Patch file for the driver.

INCLUDE file for SYSGENing in the driver.

Chainfile for copying driver files into a

user number where SYSGEN is to be

performed.

Also, several existing files must be modified. In the following list, which
describes them, <system> refers to the catalog name for the target system.
For example, the MVMEllO target system files are under the VMEllO catalog
name, and the VME/10 target system files are under the VMESIO catalog name.

The following files must be modified:

FILENAME DESCRIPTION

9998.<system>.CNFGDRVR.CI Switch file of modules in the system.

9998.<system>.IFDRVR.CI

9998 . <system> . COPYSGEN . CF

Conditional file based on switch values in

<system>.CNFGDRVR.CI.

Chainfile to copy all files for a system
SYSGEN into a particular user number.

44
MICROSYSTEMS

(g) MOTOROLA I/O WITH VERSAdos

One of the following files must be chosen according to whether or not the

module is an I/O Channel module:

9998. IOC. ADDRESS. CI I/O Channel address offsets (base address

depends on system)

.

or

9998. SIO. ADDRESS. CI Short I/O space address offsets.

The procedure for loading a new driver into the operating system follows.

Refer to Appendix F for examples of the files created during each step.

a. Create files &.xxxxDRV.SA, &.xxxxDRV.AF, and &.xxxxDRV.RO.

Write the I/O driver code to conform to the 4-element standard driver

structure. Using a similar VERSAdos driver as a model, create the

source file, assembly chainfile, and relocatable object file.

When writing a serial port driver using TERMLIB, refer to Chapter 7.

b. Create the file &.xxxxDRV.LG.

The link file for SYSGEN should have a command line for the linker

like the following:

=LINK ,&.xxxxDRV.LO,\LINKLS;<options>
SEG xxxx:0 \xxxxDRV
INPUT &.XXXXDRV.RO
INPUT <any other files needed>
END
=END

For a guide to comments and options, refer to the driver model.

When writing a serial port driver using TERMLIB, refer to Chapter 7.

c. Create the file lOC.xxxxDRV.AG.

This file sets up the DCBs and CDBs for the module. In the file

&.XXXXDRV.CI are the SYSGEN commands

SUBS lOC.xxxxDRV.AG
ASM I0C.xxxxDRV.AG,NEW.R0,\ASMLS;RMZ=85

The SUBS command creates a file named lOC.XxxxxDRV.AG, which replaces

the defined SYSGEN parameters with their values wherever they occur

in lOC.xxxxDRV.AG.

The ASM command assembles the file lOC.XxxxxDRV.AG. This file looks

different for different devices.

Refer to Appendices D and E, and to the System Generation Facility

User's Manual, for a detailed description of the macros used to set

up the DCBs and CDBs.

^^ MICROSYSTEMS

(M) MOTOROLA I/O WITH VERSAdos

B

DISK DRIVERS

When writing a disk driver, a series of SET directives is used to set

up the fields in the DSKDCB macro, as follows:

*

* Set up DCB parameters for RWINl (media independent)

DEVATT SET $1F Supports read, write, binary, random, image.

DEVCODE SET Has no meaning for disk drivers.
DEVSTAT SET 4 "Device status changed" works for disks.
CHAN_ID SET 'WIND' Channel mnemonic.
PAR_MASK SET $1AF3 Mask sent down for first Configure call.
* Refer to the Data Management Services Manual
* and set up the parameters mask according
* to the parameters supported by the driver.
* Note that the read time-outs and write
* time-outs are (bits 2 and 3) because
* these values cannot be changed in a
* Configure call.
ECCLEN SET ECC data burst length parameter.

The attributes word is media dependent, and is defined in the media file.

However, the alternate sectors bit in the attributes word is also controller
dependent, so that bit is set after both the type of disk and the type of

controller is known.

* Set up attribute mask for hard disk on RWINl. These
* are the attributes that are recognized by the RWIN
* controller and that are legal for a Configure call.
*

ATT_MASK SET 0«IOADDEN+0«IOATDEN+0«IOADSIDE+0«IOAFRMT
ATT_MASK SET ATT_MASK+1«IOARDISC+0«IOADDEND+0«IOATDEND+0«IOARIBS
ATT_MASK SET ATT_MASK+0«IOADPCOM+0«IOASIZE+1«IOAALT

ATT_WORD SET ATT_W0RD+1«I0AALT
*

* Set up interleave for hard disk on RWINl.

INTERLEAVE SET 1

It must be decided which types of disks will be supported for each

drive number. For example, the RWIN driver supports the following:

Hard disks (Winchesters):

Drive 0: (#HDxO)

8" 10Mb hard disk
5-1/4" 5Mb hard disk
5-1/4" 10Mb hard disk
5-1/4" 15Mb hard disk
5-1/4" 40Mb hard disk

^^ MICROSYSTEMS

(g) MOTOROLA I/O WITH VERSAdos

Drive 1: {#HDxl)
8" 10Mb hard disk
5-1/4" 5Mb hard disk
5-1/4" 10Mb hard disk
5-1/4" 15Mb hard disk
5-1/4" 40Mb hard disk

Floppies:
Drive 2: {#FDx2)

8" double-density, double-sided, IBM format
8" single-density, double-sided, Motorola format
8" single-density, single-sided, IBM format
8" single-density, single-sided, Motorola format
5-1/4" double-density, double-sided, IBM format

Drive 3: (#FDx3)
8" double-density, double-sided, IBM format
8" single-density, double-sided. Motorola format
8" single-density, single-sided, IBM format
8" single-density, single-sided. Motorola format
5-1/4" double-density, double-sided, IBM format

Conditional assembly is performed with flags that are set in

<system>.CNFGDRVR.CI to set up each drive number with the user-
selected type of disk.

For example, if the user wants the following disk configuration:

System has one RWIN controller module. RWIN is controller 0.

There are two hard disk drives and two floppy disk drives.
#HD00 is a 15Mb 5-1/4" Winchester,
#HD01 is a 40Mb 5-1/4" Winchester,
#FD02 is a dbl -density, dbl -sided 5-1/4" IBM format floppy,
#FD03 is a dbl -density, dbl -sided 5-1/4" IBM format floppy

Then in <system>.CNFGDRVR.CI the following code must appear:

NORWIN = 1

IFGT \NORWIN
CONTWINl =

NHRWINSl =

NFRWIN$1 =

RWINOSl =

RWIN1$1 =

RWIN2$1 =

RWIN3$1 -

ENDC

of RWINl Winchester controller modules

"0" RWINl is controller
2 2 hard disk drives
2 2 floppy disk drives

"'H5WIN15'" first RWIN, drive
is 15Mb 5-1/4"

"'H5WIN40'" first RWIN, drive 1

is 40Mb 5-1/4"

"'F5DDDSI'" first RWIN, drive 2

is floppy, 5-1/4", double-data-
density, double-sided, IBM format
"'F5DDDSr" first RWIN, drive 3

is floppy, 5-1/4", double-data-
density, double-sided, IBM format

47 MICROSYSTEMS

® MOTOROLA I/O WITH VERSAdos

In lOC.RWINDRV.AG, there are conditional assemblies to include

the proper media configuration file for the type of media

selected in <system>.CNFGDRVR.CI.

For example, for the first hard disk on the first RWIN

controller the code is:

IPC \RWIN0$1,'H5WIN15'
INCLUDE &.H5WIN15.SI

ENDC

The file &.H5WIN15.SI sets fields in the DCB that are media

dependent and reflect the attributes and parameters for a 5-1/4

inch, 15Mb Winchester hard disk.

The following symbols are used to define the media selected for

a disk drive. (Win indicates Winchester type.)

SYMBOL FILENAME DISK DESCRIPTION

'H8WIN10' &.H8WIN10.SI Hard, Win, 8", 10Mb

'H5WIN05' &.H5WIN05.SI Hard, Win, 5-1/4", 5Mb

'H5WIN10' &.H5WIN10.SI Hard, Win, 5-1/4", 10Mb

'H5WIN15' &.H5WIN15.SI Hard, Win, 5-1/4", 15Mb

'H5WIN40' &.H5WIN40.SI Hard, Win, 5-1/4", 40Mb
'F8SDDSM' &.F8SDDSM.SI Floppy, 8", single-data-

density, double-sided.
Motorola format

'F8SDSSM' &.F8SDSSM.SI Floppy, 8", single-data-
density, single-sided,
Motorola format

'F5DDDSr &.F5DDDSI.SI Floppy, 5-1/4", double-data
density, double-sided,
IBM format

'RMCMD16' &.RMCMD16.SI Removable CMD 16Mb

'FXCMD16' &.FXCMD16.SI Fixed CMD 16Mb

'FXCMD80' &.FXCMD80.SI Fixed CMD 80Mb
'RMLRK08' &.RMLRK08.SI Removable LARK 8Mb

'FXLRK08' &.FXLRK08.SI Fixed LARK 8Mb

'RMLRK25' &.RMLRK25.SI Removable LARK 25Mb

'FXLRK25' &.FXLRK25.SI Fixed LARK 25Mb
'F8DDDSI' &.F8DDDSI.SI Floppy 8", double-data-

density, double-sided,

IBM format

'F8SDSSI' &.F8SDSSI.SI Floppy 8", single-data-
density, single-sided,
IBM format

TERMINAL AND PRINTER DRIVERS

Each type of driver has a slightly different format in the file

lOC.xxxxDRV.AG. When writing a driver for a terminal or printer

use a similar type of driver as a model and change it as needed

to fit the specifications of the driver being written.

48 MICROSYSTEMS

® MOTOROLA I/O WITH VERSAdos

NOTE

The DCBs will end up in the shared segment lOSG,

whereas the CCBs exist along with the TCB structures

in the EXEC system space. Using the utility SYSANAL,

both the DCB and CCB structures can be examined in a

"live" VERSAdos system.

d. Create the file VERSAPT.xxxxDRV.CF.

This is the patch file for the driver.

e. Create the file &.xxxxDRV.CI.

This is the file that brings the driver and its device configuration

into the system. A conditional assembly in <system>.IFDRVR.CI brings

it in if the appropriate switches in <system>.CNFGDRVR.CI are set.

File &.XXXXDRV.CI uses the files &.xxxxDRV.LG, lOC.xxxxDRV.AG, and

VERSAPT.xxxxDRV.CF.

f. Create the file COPYGEN.xxxxDRV.CF.

This file is included in <system>.COPYSGEN.CF for each system that

can use the driver.

g. Modify the file <system>.CNFGDRVR.CI.

This is a switch file that allows users to select the modules to be

included in the system.

h. Modify the file <system>.IFDRVR.CI.

This is a conditional assembly file, based on the switches set in

<system>.CNFGDRVR.CI, to include &.xxxxDRV.CI if the module is to be

used in the system.

i. Modify either IOC. ADDRESS. CI or SIO. ADDRESS. CI.

For an I/O Channel module, add the address of the module to

IOC. ADDRESS. CI. Otherwise, add the address of the module to

SIO. ADDRESS. CI. The address space for the module should not overlap
with another module that will be included in the system.

Choose an address of a readable register on the module, because this

is the address that is read during boot to determine if the module is

there. Also, this is the address that the driver finds at the CCBCHB

offset in the CCB when accessing the device.

j. Modify <system>.COPYSGEN.CF.

This is the chainfile that copies to a designated user area all the

files needed for a SYSGEN for the target system. This chainfile
includes file COPYGEN.xxxxDRV.CF if the system is to use the module.

^^ MICROSYSTEMS

® MOTOROLA I/O WITH VERSAdos

6.4 NAP OF INCLUDE FILES IN THE SYSGEN FILES (WITHOUT PROCESS CONTROL DRIVER)

The following is a list of INCLUDE files used during the process of SYSGENing
a new driver into VERSAdos.

&. VERSADOS. CD:

INCLUDE <systein>.RMS.CI
INCLUDE &.DRVLIB.CI
INCLUDE &.TERMLIB.CI
INCLUDE <systetn>. SYSTEM. CI

INCLUDE &.CNFGTASK.CI
INCLUDE &.VALPAR.CI
INCLUDE <system>.CNFGDRVR.CI
INCLUDE <systeffl>.IFDRVR.CI

INCLUDE &.IOCGEN.CI
INCLUDE &.IFTASK.CI
INCLUDE &.IOI.CI
INCLUDE &.SYSINIT.CI

Q

<system>. SYSTEM. CI:

INCLUDE SIO. ADDRESS. CI

INCLUDE IOC. ADDRESS. CI

<systeiii>.IFDRVR.CI:

INCLUDE &.XXXXDRV.CI

&.IFTASK.CI
INCLUDE FHSIOS. VERSADOS. CI

INCLUDE FMS. VERSADOS. CI

INCLUDE EET. VERSADOS. CI

INCLUDE MMULDR. VERSADOS. CI (for MMU systems)
INCLUDE NOMMULDR. VERSADOS. CI (for non-MMU systems)

&.XXXXDRV.CI:
SUBS &.XXXXDRV.LG
LINK &.XXXXDRV.LG
PROCESS &.XXXXDRV.LO
END &.XXXXDRV.LO
SUBS lOC.xxxxDRV.AG
ASM lOC.xxxxDRV.AG.NEW.RO AASMLS RMZ=85
INCLUDE &.IOCGEN.CI
LINK &.IOCGEN.LG

50 MICROSYSTEMS

(g) MOTOROLA TERMLIB

CHAPTER 7

TERMLIB

7.1 INTRODUCTION

The file TERMLIB was created to ease the task of writing drivers under the
VERSAdos operating system by defining device-independent routines required.
This chapter describes the structure of TERMLIB and the routines available
therein. It also explains how to write a driver using TERMLIB and how to

incorporate the new driver into the operating system.

7.2 DRIVER ROUTINE FILES

Three files contain the code required by drivers under VERSAdos. These files,
and their contents, are

DRVLIB routines common to all drivers

TERMLIB device-independent code and routines common to all serial

port drivers

MPSCDRV device-dependent code

The routines in DRVLIB and TERMLIB are described in the following paragraphs.

7.3 DRVLIB ROUTINES

The DRVLIB file contains the following routines, which are common to all

drivers:

QEVENT
LOGPHY
SET TIME

7.3.1 QEVENT

QEVENT is a collection of subroutines that queue events from the driver to a

task (usually IDS). The types of events queued are

. Normal I/O completion event

. HALT I/O event

. Unsolicited device event where DOB address is known

There are six different subroutines in the QEVENT module, which allow the

queuing of each event type listed from either the command level or the

interrupt handler.

^^ MICROSYSTEMS

B

(M) MOTOROLA TERMLIB

B

7.3.1.1 QEVENT Subroutine Descriptions.

SUBROUTINE DESCRIPTION OF EVENT TO BE SENT

N_NRM_QEVENT Normal I/O completion event
Queued from command level (0)

I_NRM_QEVENT Normal I/O completion event
Queued from interrupt handler

N_HLT_QEVENT HALT I/O event
Queued from command level (0)

I_HLT_QEVENT HALT I/O event
Queued from interrupt handler

N_UNS_QEVENT Unsolicited device event
Queued from command level (0)

Status value {DCB known)

lUNSQEVENT Unsolicited device event
Queued from interrupt handler
Status value (DCB known)

7.3.1.2 Entry and Exit Conditions and Register Usage . These paragraphs

describe entry and exit conditions and register usage for QEVENT subroutines.

Entry Points for Normal I/O Completion and HALT I/O Events

Subroutine names:

N_NRM_QEVENT
I_NRM_QEVENT
N_HLT_QEVENT
I_HLT_QEVENT

Entry: AG = address of place to copy event (must have at least

20 bytes reserved)
or

if the event will not be copied
A5 = address of CCB
Dl.B = error message
D3.L = address of DCB

Registers usage: [01234567
Data ISPSPSSSS
Address | P S S S S P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

^^ MICROSYSTEMS

@) MOTOROLA TERMLIB

Exit: Condition Code Register (CCR):

<EQ> = TRAP #0 call succeeded

<NE> = TRAP #0 call did not succeed

Exits to: RTS to calling routine

Entry Points for Unsolicited Device Event (Status Value 0)

Subroutine names:

N_UNS_QEVENT
I_UNS_QEVENT

Entry: AO = address of place to copy event (must have at least

20 bytes reserved)
or

if the event will not be copied

A5 = address of CCB

D3.L = address of DCS

D4.W = device status and type

Registers usage: |01234567
Data

I

SSSPPSSS
Address] P S S S S P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exit: CCR: <EQ> = TRAP #0 call succeeded

<NE> = TRAP #0 call did not succeed

Exits to: RTS to calling routine

7.3.1.3 QEVENT Examples . The following paragraphs contain examples of the

use of QEVENT subroutines. Each example assumes a field in the CCB called

DCBADDR that holds the address of the DCB.

Normal Event From Interrupt Handler

In this example, register A5 contains the address of the CCB.

CLR.L AO Event not to be copied.

MOVE.B #ISTA0K,D1 "OK" message (no error).

MOVE.L DCB_ADDR(A5),D3 D3 <--- DCB address.

BSR.L I_NRM_QEVENT BSR to the routine.

IF <NE> THEN If something went wrong,

TRO$. KILLER ,
kill the system.

ENDI

^3 MICROSYSTEMS

D

(M) MOTOROLA TERMLIB

Normal Event from Commands (Level 0)

In this example, register A5 contains the address of the CCB.

CLR.L AO
MOVE.W #ISTAIF,D1
MOVE.L DCB_ADDR(A5),D3
BSR.L N_NRM_Q EVENT
IF <NE> THEN

TRO$. KILLER ,

END I

Event not to be copied.
Command not found error.
D3 <--- DCB address.
BSR to the routine.
If something went wrong,
kill the system.

Unsolicited Device Event from Interrupt Handler

In this example, register A5 contains the address of the CCB. Also, the
subroutine GETSTATUS polls the device and returns its status in DO.B.

B

CLR.L
BSR.L
MOVE.B
LSL.W
MOVE.B

AO
GET_STATUS
D0,D4
#8,04
#X0SACIA,D4

Event not to be copied.
00. B <--- Device status.
04. B <--- Device status.
Shift into second byte.
04. B <--- Device type.

Now register 04 contains the following:

MOVE.L 0CB_AD0R(A5),03
BSR.L I_UNS_QEVENT
IF <NE> THEN

TRO$. KILLER ,

ENDI

I
?

i
?

i
dev Stat jdev type

j

03 <--- OCB address.
BSR to the routine.
If something went wrong,
kill the system.

HALT I/O Event from Commands (Level 01

CLR.L AO Event not to be copied.
MOVE.W #ISTATO,01 Time-out message.
MOVE.L OCB A0DR(A5),03 03 <--- DCB address.
BSR.L N HLT QEVENT BSR to the routine.
IF <NE> THEN If something went wrong,

TRO$. KILLER , kill the system.
ENDI

54 MICROSYSTEMS

(M) MOTOROLA TERMLIB

7.3.2 LOGPHY

The LOGPHY routine converts a logical address to a physical address. LOGPHY
also checks to ensure that the address is valid for this task.

7.3.2.1 Entry and Exit Conditions and Register Usage . Entry and exit
conditions and register usage for the LOGPHY subroutine are described below.

Subroutine name:

LOGPHY

Entry: 05 = buffer length in bytes
06 = buffer logical start address (to convert)
AG = address of KB of task containing buffer
A5 = address of CCB

Registers usage: 10 12 3 4 5 6 7

Oata
I

S S S S S P P/R S

Address
| P S S S S P

P = parameter register
R = return register
* = destroyed register
5 = saved and restored register

Exit: CCR: <EQ> = physical address is in 06.

L

<NE> = address is invalid for this task
06 = physical start address

Exits to: RTS to calling routine

7.3.2.2 LOGPHY Example . In this example, register A5 contains the address of
the CCB, and register A3 contains the address of the user's lOCB. The field
TCBADDR, located in the CCB, holds the physical address of the TCB of the
buffer owner.

MOVE.L I0SSA0(A3),06 05 <--- Logical start address.
MOVE.L I0SEAD(A3),05 D5 <--- Logical end address.
SUB.L 06,05
ADO.L #1,05 05 <--- Buffer length.
MOVE.L TCB_AD0R(A5),A0 AG <--- TCB address.
BSR.L LOGPHY Call LOGPHY.
IF <NE> THEN Bad return?

MOVE.B #ISTAA00,01 01. B <--- Error code.
BRA NRM_EXIT Branch to take care of it.

ENOI

At this point, 06 contains the physical start address of the buffer.

^^ MICROSYSTEMS

(g) MOTOROLA
TERMLIB

B

7.3.3 SET_TIME

The SET_TIME routine sets up and performs a TRAP #0 call to generate a wakeup

call. The driver writer may want to do this before giving a command to the

controller as a time-out, so that the system will not hang waiting for an

interrupt that may never come.

This routine will not perform the TRAP #0 call if zero milliseconds were

requested.

7.3.3.1 Entry and Exit Conditions and Register Usage .

Subroutine name:

SET_TIME

Entry: A5 = address of CCB
A3 = address of wakeup routine
D3 = number of milliseconds for wakeup call

Registers usage: 101234567
Data

I
S S S P

Address | S S P P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exit: CCR: <EQ> = periodic activation call succeeded

<NE> = periodic activation call did not succeed

or
number of milliseconds =

Exits to: RTS to calling routine

7.3.3.2 Notes on Using SET TIME . The address contained in A3 is where RMS58K

will begin execution when the timer goes off. When execution begins, the EXEC

saves the contents of registers DO, Dl, AO, and Al. (The registers that are

normally saved during an interrupt are DO, AO, Al, and A5.)

Register Dl contains an ID that the user identified to the EXEC when the trap

call was performed. In this case, the ID is the address of the CCB. So the

first thing a user should do after wakeup is push A5 and any other registers

that might be used on the stack, and move the contents of Dl into A5. Also,

the user must return with an RTE from the wakeup call.

7.3.3.3 SETTIME Example . In this example, register A5 contains the address

of the CCB.

^^ MICROSYSTEMS

@) MOTOROLA TERMLIB

TIMEFLAG is a byte reserved in the CCB to keep track of the status of a wakeup
call: if the flag is set, then a wakeup is active and the alternative event

has not occurred.

LEA WAKEUP (PC), A3

MOVE.L #5000,03

BSR.L SET TIME

A3 <--- Address of place to start
executing upon wakeup.
D3 <--- Number of milliseconds to

wait for wakeup.

If the wakeup call succeeds, then set TIMEFLAG; otherwise, clear TIMEFLAG.

SEQ.B TIMEFLAG(A5)

Send command to device and return control to the system. If and when the

command completes as expected, return to COMM_COMPLETE.

BSR.L

COMM_COMPLETE:
SF.B

SEND COMMAND

TIMEFLAG(A5) Clear TIMEFLAG

* Finish the processing ...
*

WAKEUP:

* The system has saved DO, 01, AO, and Al at this point in processing.
*

RTEREGS REG
MOVEM.L
MOVE.L

*

*

*

TST.B
IF <NE>

*

*

*

*

*

02-D7/A3-A5
RTEREGS, -(SP)

01, A5

TIMEFLAG{A5)
THEN

Save registers.
01 contains the request 10 that was

given the EXEC when the periodic
activation request was set up; the
request ID is the CCB address.

If the flag is set, then the

alternative event has not occurred,

and something must be done here.

SF.B TIMEFLAG{A5)

Do whatever processing is needed at this point

ENDI

MOVEM.L (SP)+, RTEREGS
RTE

Clear the flag to show the periodic
activation request occurred.

57 MICROSYSTEMS

H

(g) MOTOROLA TERMLIB

7.4 TERMLIB ROUTINES

Routines contained in TERMLIB are common for all serial port drivers. These
routines include XDEFed routines called as subroutines, background routines
called with the BKGRND macro, and transparent mode routines. All are

described in the following paragraphs.

7.4.1 XDEFed Routines Called as Subroutines

The externally defined routines that are resident in TERMLIB and called as

subroutines are as follows:

LOGJRR
RESET
TERM_INIT
TERM_COMMAND
TERM_TBE
TERM_BREAK
TERM_GOT_CHAR
TERM_UNRDY
MARK_DOWN

7.4.1.1 LOGERR . The LOG_ERR routine logs an error on a received character.

A pointer is kept to the last character in the receive queue that had an

error. If there was no previous character with an error, then the error code

is saved, along with the location of the erroneous character.

Later, when background routine RECV is running, if a character with an error
is found an I/O completion event is returned to lOS with the error message.

Entry and Exit Conditions and Register Usage

Entry and exit conditions and register usage for LOGERR are described below.

Subroutine name:

LOG_ERR

Entry: A5 = address of CCB
DO.B =. error code

Registers usage: 10 12 3 4 5 6 7

Data
I

P

Address
j

P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exits to: RTS to calling routine

52 MICROSYSTEMS

(g) MOTOROLA TERMLIB

LOG ERR Example

In this example, the driver is in its interrupt handler, and A5 contains the

driver's CCB address.

The user's device sends an interrupt when an error is detected in the process

of receiving a character. In this case, the error is a parity error or a

framing error.

MOVE.B #ISTACSM,DO DO.B <--- Error code (from lOE.EQ).

BSR.L LOG_ERR Call the LOG_ERR routine.

BRA INT_EXIT Branch to the interrupt exit routine.

7.4.1.2 RESET . The RESET routine sets and clears flags and pointers in the

CCB. It empties the receive and transmit queues and sets the transmit state,

receive state, and special flag to idle. If I/O is in progress, RESET sets

the menu inactive and decrements the I/O count for the requesting task.

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for the RESET routine

are described below.

Subroutine name:

RESET

Entry: A5 = address of CCB

Registers usage: |
1 2 3 4 5 6 7

Data
I

Address | S P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exits to: RTS to calling routine

7.4.1.3 TERM INIT . This routine is called by the device-dependent module

after it receives its initialization call from the CMR handler to perform

setup procedures for command service and interrupt service.

TERM_INIT performs the following major functions:

a. Validates the channel type field.

b. Fills in the driver code, recognized attributes, recognized

parameters, and recognized baud rate fields in the CCB.

^^ MICROSYSTEMS

B

® MOTO«OI./» ''^^'''

c. Loads the scheduler's address into the CCB for later use.

d. Initializes pointers for the transmit and receive queues.

e. Initializes flags and pointers in the CCB.

f. Sets up the background activation blocks.

References from TCHTYPE Used in TERM INIT

The file TCHTYPE. AG is assembled at SYSGEN time and linked with TERMLIB.RO to

form file TERMLIB.TF. The structure of TCHTYPE is described in paragraph

"SYSGENing The New Driver Into The Operating System", later in this chapter.

CH_TYPES entry point to TCHTYPE table
NUMTYPES number of channel entries in TCHTYPE table
NUMBYTES number of bytes in a channel entry in TCHTYPE

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for TERMINIT are

described below.

Subroutine name:

TERM_INIT

Entry: A5 = address of CCB

Registers usage: |01 2 34567
Data

I

* *

Address |

* P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exit: CCR: <PL> and <NE> = bad EXEC call

<MI> - channel is down
<EQ> = all went well

Exits to: RTS to calling routine

^° MICROSYSTEMS

(^ MOTOROLA
TERMLIB

TERM INIT Example

In this example, MYINIT is the entry point for the initialization routine for

the device-dependent driver.

On entry, register A5 contains the address of the CCB.

DOINIT is the entry point for the device-dependent initialization routine.

Most of DO_INIT can be executed at level 0; this example calls it in call-

guarded mode, because some of the data structures accessed by this example are

also accessed by some background routines, and those data structures must be

protected from simultaneous changes. For more explanation of the background

and call -guarded concept, refer to paragraph "Background Routines Called With

The BKGRND Macro", later in this chapter, and to Appendix G.

MYINIT:
BSR.L TERM INIT

IF <NE> THEN
IF <PL> THEN

TRO$. KILLER ,

ELSE
RTS

ENDI
END I

Do the device-independent
initialization.
If something went wrong
and the EXEC call failed,

call KILLER.

Otherwise, if the channel is

down, just return.

* Processing reaches this point because all went well with TERMINIT.

LEA
MOVE.L
TRAP
RTS

DO_INIT{PC),AO
#TOGUARD,DO

Call DOINIT in call -guarded mode

to complete the device-dependent
initialization.
Return to the CMR handler.

7.4.1.4 TERM COMMAND . TERM_COMMAND sorts out the command received from the

CMR handler and, if necessary, starts I/O.

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for the TERMCOMMAND
routine are described below.

Subroutine name:

TERM_COMMAND

Entry: A2 = physical address of CMR parameter block

A5 = address of CCB
A5 = address of TCB of attached task

61 MICROSYSTEMS

(g) MOTOROLA TERMLIB

Registers usage:

Exit: DO

10 12 3 4 5 6 7

Data
I

* * * * *

Address |
* * p * * p p

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

results of parameter block validation.
Always in the driver's case, because lOS

will not send any request except HALT I/O if

the driver is busy, and the CMR handler makes
all the other checks.

Exits to: RTS to calling routine

The calling routine should simply execute an RTS to get back to the CMR
handler.

B

TERM COMMAND Examole

In this example, MYCOMMAND is the entry point for the device-dependent
driver's commands. On entry, A2 contains the physical address of the CMR
parameter block, and A5 contains the address of the CCB. Also, A6 contains
the address of the TCB.

MYCOMMAND:

Perform any necessary device-dependent tasks here, making
sure that the contents of A2, A5, and A6 are preserved.

BSR.L TERM_COMMAND Call TERM_COMMAND to sort out the
command and start I/O if necessary

RTS Return to the CMR handler; TERM_COMMAND
will clear DO for the return

lOS Commands

When TERM COMMAND receives an lOS command (from Input/Output Services), it

initiates a series of calls. Table 7-1 shows the correspondence between an

lOS command, the TERMLIB routine it calls, the call -guarded routine{s) called
by that TERMLIB routine, and the device-dependent routine(s) called by the

call-guarded routine(s). The paragraphs that follow describe the sequence of
action initiated by each routine.

62 MICROSYSTEMS

® MOTOROLA TERMLIB

TABLE 7-1. lOS Command/Routine Hierarchy
3:s====ss===sssssss:s:sssssss==sssss3BssSSBSBSBZBSBSBSSSS3S:s=s=s==s:e===ssssx=sss=s====:=

TERMLIB CALL-GUARDED DEVICE-DEPENDENT
lOS COMMAND ROUTINE ROUTINES ROUTINES

lOHALT HALT DO HALT
lOWRIT WRITE CALL XMIT
lOOWIN OUTWINP CALL XMIT
lOREAD READ CALL XMIT
lOTBRK XMIT BRK BEG BREAK
lOSTAT REQ STAT DO EVENT GET STAT
lOCNFG CONFIGUR DO_CONFIGURE CLOCK RESET

SETUP
DO EVENT

lOCHDC CHNG_DEF DO_EVENT GET_STAT

ROUTINES CALLED BY TERMJOMMAND

The following routines are called by TERMCOMMAND on receipt of an lOS

command

.

HALT

The TERMLIB routine HALT is called when an lOHALT command is received from
lOS. It performs the following steps:

a. Calls DO_HALT in a call -guarded manner.

b. Branches to CMD EXIT.

WRITE

The TERMLIB routine WRITE is called when an lOWRIT command is received
from lOS. It performs as follows:

a. Calls IO_COMN.

b. If the driver is requested to clear the discard output flag, WRITE
clears it and sets INHIB_DO.

c. Sets up the menu for the type of write requested and the END
directive, so that a completion event will be sent when the write
finishes.

d. Branches to START 10.

63 MICROSYSTEMS

(g) MOTOROLA TERMLIB

OUTWINP

The TERMLIB routine OUTWINP is called when an lOOWIN command is received

from lOS. It does the following:

a. Calls IO_COMN.

b. Calls BUF_ADDR to obtain read buffer physical address.

c. Calls RD_COMN.

d. Sets up menu according to requested read and write, and appends

the END directive.

e. Branches to START_IO.

READ

The TERMLIB routine READ is called when an lOREAD command is received from

lOS. It performs as follows:

a. Calls IO_COMN.

b. Calls RD_COMN.

c. Sets up menu with type read requested; sets up the END directive.

d. Branches to STARTIO.

XMIT_BRK

The TERMLIB routine XMIT_BRK is called when an lOTBRK command is received
from lOS. It accomplishes the following:

a. Calls BEG_BREAK in a call -guarded manner. This is the entry point

used when the background routine BBRK is called as a subroutine.

b. Branches to CMD_EXIT.

REQ_STAT

The TERMLIB routine REQSTAT is called when an lOSTAT command is received

from lOS. It performs the following actions:

a. Calls the device-dependent routine GET_STAT.

b. Fills in the status, type, attributes word, and parameter fields

of the user's Configure/Status Block (CSB).

c. Copies the configuration from the CCB to the user's CSB.

d. Branches to NRM EXIT.

^* MICROSYSTEMS

(g) MOTOROLA
^^'^"'IB

CONFIGUR

The TERMLIB routine CONFIGUR is called when an lOCNFG command is received

from lOS. It does the following:

a. Copies the time-out values from the DCB to the CCB.

b. Calls CMN_CNFG.

c. Calls DOCONFIGURE in a call -guarded manner.

d. Branches to NRM EXIT.

CHNG_DEF

The TERMLIB routine CHNG_DEF is called when an lOCHDC command is received

from lOS. It performs the following steps:

a. Calls CMN_CNFG.

b. If user is requesting a change to transparent mode now, CHNG_DEF

installs user's branch table address in the CCB at ms_BRA_TABL,
writes the address of the driver's jump table in the user's CSB,

and also writes to the CSB the contents of A5 and the driver's
interrupt level

.

c. Calls the device-dependent routine GETSTAT.

d. Copies the new default configuration into the CCB.

e. Branches to NRM_EXIT.

ROUTINES CALLED AS SUBROUTINES

The following routines are called as subroutines in the command sequence

initiated by TERM_COMMAND on receipt of an lOS command.

IO_COMN

The IO_COMN subroutine is called by TERMLIB routines WRITE, OUTWINP, and

READ. It performs the following actions:

a. Calls the device-dependent routine GET_STAT.

b. If the device is not ready, sets up the proper error code and

branches to NRMJXIT.

c. If the device is ready, but the driver is busy detecting auto baud

rate, IO_COMN sets up the error code and branches to NRMEXIT.

^^ MICROSYSTEMS

B

(g) MOTOftOLA
TERMLIB

d. If the device is ready and the driver is not in the middle of

detecting baud rate, IO_COMN checks to see if the 10 buffer is in

a different task than that of the lOCB.

e. If the 10 buffer is in a different task than that of the lOCB,

then IO_COMN calls the TRAP #0 call GETTCB. If the call is good,

it puts the physical address of the TCB into the CCB. If the call

is bad, it sets the status in the lOCB and branches to NRMEXIT.

f. Clears XFER_LEN.

g. Calls BUFADDR to get write buffer physical address.

h. Returns (with an RTS instruction) to the routine that called it.

CMN CNFG

H

The CMN_CNFG subroutine is called by both the TERMLIB routines CONFIGUR
and CHNG_DEF. It perforins as follows:

a. Obtains the physical address of the CSB.

b. If the attributes mask or parameters mask is not legal, CMNCNFG
sets up the proper error code, puts the ISTACNF code in the status
area, and branches to NRMEXIT.

c. If the attributes mask and the parameters mask are acceptable,
then CMNCNFG copies the proposed configuration into the CSB.

d. If any parameter is illegal, CMNCNFG sets the corresponding error
code,, puts ISTACNF in the status area, and branches to NRMEXIT.

e. Otherwise, if all the fields are legal, CMN_CNFG sets up the

fields at the top of the CSB, sets the DCBCCF flag, and returns to

the routine that called it.

DO HALT

Call -guarded subroutine DO_HALT is called by TERMLIB routine HALT. It

does the following:

a. If I/O is being performed, DO_HALT puts the time-out status into

the event area, sets the status field of the lOCB with the time-
out code, sets the length of the data transfer, and calls
DDP_RESET.

b. If I/O is not being performed, DOHALT puts the abort status into
the event area.

c. In either case, DOHALT sends an event by calling QEVENT.

d. If the event is sent without error, DO_HALT returns to HALT.

e. If errors occur in sending the event, DO_HALT proceeds to KILLER.

^^ MICROSYSTEMS

(g) M€>rt>fK>LA TE'^'-IB

RD COMN

The RD_COMN subroutine is called by TERMLIB routines OUTWINP and READ. It

does the following:

a. Sets the INPUT and INHIB_DO flags. Clears DISCARD, CHAR_CNT, and

ECHO.

b. If the options word says that the driver should not suppress echo,

but the driver is configured to echo, then RD_COMN sets ECHO.

c. Returns to the TERMLIB routine that called it.

BUF_ADDR

The BUF_ADDR subroutine is called by the TERMLIB routine OUTWINP and by

the lOCOMN subroutine. It performs as follows:

a. Calls GET_PHYSICAL_ADDR.

b. If there was an error while getting the physical address, BUF_ADDR
sets up the error code and branches to NRM_EXIT.

c. Otherwise, BUFADDR sets up the physical start, end, and length in

registers D4, D5, and D6, and executes an RTS instruction.

GET_PHYSICAL_ADDR

The GET_PHYSICAL_ADDR subroutine is called by the BUF_ADDR subroutine. It

does the following:

a. Calls the externally referenced (XREFed) routine LOGPHY.

b. Returns to BUF ADDR.

CALL_XMIT

The call -guarded subroutine CALL_XMIT is called by START_I0, and by

TERMLIB routines WRITE, OUTWINP, and READ. CALL_XMIT accomplishes the

following:

a. Obtains the device address from register Al and the driver address
from A4; sets the NONINTERRUPT flag.

b. Calls XMIT.

c. Clears the NONINTERRUPT flag.

d. Executes an RTS instruction.

^^
MICROSYSTEMS

D

®__ _ TERMLIBMOTOROLA

DO EVENT

D

The call -guarded subroutine DO_EVENT is called by NRMEXIT. It performs

the following steps:

a. Sets the NONINTERRUPT flag.

b. Loads the address of the event area into AO.

c. Calls Q_EVENT.

d. Clears the NONINTERRUPT flag.

e. If there was a bad return from Q_EVENT, goes to KILLER.

f. Executes an RTS instruction.

Q_EVENT

The Q_EVENT subroutine is called by the call -guarded routine DOHALT and

the call -guarded subroutine DO_EVENT. Q_EVENT performs as follows:

a. Saves the registers the driver will destroy.

b. Depending on the type of event the driver wants to send, and

whether or not the NONINTERRUPT flag is set, QJVENT calls the

appropriate routine from the QEVENT module.

c. Restores the registers and executes an RTS instruction.

ROUTINES USED AS EXIT POINTS

The following routines are used as exit points for the command sequence

initiated by TERMCOMMAND on receipt of an lOS command.

START_IO

TERMLIB routines WRITE, OUTWINP, and READ branch to START_IO, which does

the following:

a. Increments outstanding I/O count in user's TCB.

b. Calls CALL_XMIT in a call-guarded manner.

c. Branches to CMD EXIT.

^^ MICROSYSTEMS

(§) MOTOROLA ^^^^^^

NRM EXIT

The TERMLIB routines REQ_STAT, CONFIGUR, and CHNG_DEF; and the subroutines
CMN_CNFG, IO_COMN, and BUF_ADDR; branch to NRM_EXIT, which performs

the following actions:

a. Puts the status into the IOCS.

b. Prepares the completion event.

c. Calls DOEVENT in a call -guarded manner.

d. Branches to CMD_EXIT.

CMD_EXIT

TERMLIB routine XMIT_BRK, and the START_IO and NRM_EXIT routines, branch

to CMDEXIT, which performs as follows:

a. Moves a into register DO to indicate all is well.

b. Restores the stack pointer saved at the beginning of commands.

c. Returns (with an RTS) to the CMR handler.

7.4.1.5 TERM BREAK . The TERM_BREAK routine is called by the device-dependent

module when it receives a break signal. If the driver is in transparent mode,

this routine calls the transparent mode break routine and exits. Otherwise,

TERM_BREAK calls the background BREAK routine.

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for the TERMBREAK
routine are described below.

Subroutine name:

TERM_BREAK

Entry: A5 = address of CCB

Interrupt level: INHIBITED. Called by interrupt handler.

D

^^ MICROSYSTEMS

® MOTOROLA TERMLIB

B

Registers usage:
| 1 2 3 4 5 6 7

Data
I

Address |

* P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exits to: RTS to calling routine

TERM BREAK Examole

In this example, the device-dependent driver has received an interrupt which
notifies it that it has just received a break signal. Also, register A5 con-
tains the address of the CCB.

BSR.L TERMJREAK Call the TERM_BREAK routine.
BRA.L INTEXIT Branch to the interrupt exit routine.

7.4.1.6 TERM TBE . The TERMTBE routine is called by the device-dependent
module when a transmit-buffer-empty interrupt has been received. If the
driver is in the transparent mode, TERMTBE calls the transparent mode
transmit-buffer-empty routine. Otherwise, it calls background routine XMIT.

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for the TERMTBE
routine are described below.

Subroutine name:

TERM_TBE

Entry: A5 = address of CCB

Interrupt level: INHIBITED. Called by interrupt handler.

Registers usage: 101234567
Data

I

Address |

* P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exits to: RTS to calling routine

70
MICROSYSTEMS

® MOTOROLA TERMLIB

TERM TBE Example

In this example, the device-dependent driver has just received a transmit-
buffer-empty interrupt, register A5 contains the address of the CCB, and all

device-dependent processing required has been done.

BSR.L TERM_TBE Call TERM_TBE.
BRA.L INTEXIT Branch to interrupt exit routine.

7.4.1.7 TERM GOT CHAR . The TERM_GOT_CHAR routine is called by the device-
dependent module when it receives a character. If the driver is in

transparent mode, the driver calls the user's received-character-available
routine and executes an RTS instruction.

If the driver is not in transparent mode, it looks for special characters
listed below and responds as described.

a. Not NUL and BREAK equivalent:
TERM_GOT_CHAR calls background BREAK routine and exits.

b. Not BREAK equivalent, the driver is blocked, and any character is XON:
TERM_GOT_CHAR calls background routine UNBLK and exits.

c. NUL:

If the driver is not passing nulls as data, TERM_GOT_CHAR ignores the
character and exits. Otherwise, it treats character as NONSPECIAL.

d. XON:
If blocked, TERM_GOT_CHAR calls background routine UNBLK and exits.

e. XOFF:
TERM_GOT_CHAR sets BLOCKED flag, calls background routine BLOCK, and
exits.

f. DISCARD OUTPUT character:
If the discard output function is not currently inhibited, the
TERM_GOT_CHAR routine inverts the DISCARD flag. Otherwise, it ignores
the character and exits.

g. NOT_SPECIAL:
TERM_GOT_CHAR tries to put the character in the receive queue. If the
receive queue is full, it logs an overrun error and exits. If near
full, it calls background routine STOP, calls background RECV, and
exits.

D

^^
MICROSYSTEMS

B

,n. TERMLIB
(M) MOTOROLA

Entry and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for TERM_GOT_CHAR are

described below.

Subroutine name:

TERM_GOT_CHAR

Entry: A5 = address of CCB

DO.B = the character received

Interrupt level: INHIBITED. Called by interrupt handler.

Registers usage: !
1 Z 3 4—5—6—

7

Data
I

P *

Address |

* P

P = parameter register

R = return register
* = destroyed register

S = saved and restored register

Exits to: RTS to calling routine

TERM GOT CHAR Examole

In this example, register A5 contains the address of the CCB, and an interrupt

has occurred which tells the device-dependent driver that a character has been

received. The device-dependent driver has put the character into DO.B. All

device-dependent processing has been done.

BSR.L TERM_60T_CHAR Call TERM_GOT_CHAR.

BRA.L INT_EXIT Branch to the interrupt exit routine.

7.4.1.8 TERM UNRDY . The TERM_UNRDY routine is called by the device-dependent

module when it discovers that the terminal status has changed to unready. If

the driver is performing I/O, it sends a completion event with a not ready

status and calls RESET and DDP_RESET.

Entrv and Exit Conditions and Register Usage

The entry and exit conditions and register usage scheme for TERM_UNRDY are

described below.

Subroutine name:

TERM_UNRDY

Entry: A5 = address of CCB

^2 MICROSYSTEMS

(^ MOTOROLA TERMLIB

Interrupt level: Level 0. Called in background.

Registers usage: 101234567
Data

I

Address |

* * s P

P = parameter register
R = return register
* = destroyed register
S = saved and restored register

Exit: CCR: <PL> and <NE> = bad EXEC call
<MI> = channel is down
<EQ> = all went well queuing the event, or

driver was not doing I/O

Exits to: RTS to calling routine

TERM UNRDY Example

In this example, register A5 contains the address of the CCB. The device-
dependent driver has received an interrupt which tells it that the terminal
status has changed to unready. It has called a background routine to take
care of this condition, so the driver is executing at interrupt level 0.

BSR.L TERM_UNRDY
IF <NE> THEN

IF <PL> THEN TERM_UNRDY tried to queue an
TRO$. KILLER , event and the EXEC call failed,
ENDI so kill the system.

END I

RTS

7.4.1.9 MARK_DOWN . The MARK DOWN routine is called by the device-dependent
module when it detects that the channel is down because it is not ready. The
driver sets MENU to M_DOWN, and moves ISTAUNR into DOWN_ERR.

Entry and Exit Conditions and Reoister Usage

The entry and exit conditions and register usage scheme for MARKDOWN is
described below.

Subroutine name:

MARK_DOWN

Entry: A5 = address of CCB

^^
MICROSYSTEMS

(^ MOTOROLA
TERMLIB

Interrupt level: Level 0. Called in background.

Registers usage: |01234567
Data

I

Address
j

P

P = parameter register
R = return register
* = destroyed register
S - saved and restored register

Exits to: RTS to calling routine

MARKDOWN Examole

In this example, register A5 contains the address of the CCB. In DOINIT, the

device-dependent driver's initialization routine, the driver wants and is able

to do a diagnostic test and, if the test fails, wants to mark the channel

down. The driver is executing in the background at interrupt level 0.

DO_INIT:

* Inhibit interrupts

B

*

MOVE.L SR,-{SP)

Perform the device-dependent tasks

* Test the device ..

.

* If the device fails, then

BSR.L MARK_DOWN
*
* Restore interrupt level

MOVE.L {SR)+,SR
RTS

'^ MICROSYSTEMS

(g) MOTOROLA TERMLIB

7.4.2 Background Routines Called with the BKGRND Macro

The background routines available in TERMLIB that can be called with the

BKGRND macro are

RECV
BREAK
XMIT
BLOCK
UNBLK
STOP
B_BRK
E_BRK

Most of these routines are called only by TERMLIB, not by the device-dependent

module. A routine that is called by the device-dependent module is BREAK.

7.4.2.1 How the Background and Call -Guarded Modes Work . Using the background

routines allows a driver to kick off routines that can run at interrupt level

0. This is desirable because running at level allows other devices at the

same or lower interrupt level to use the processor.

Only one background or call -guarded routine is allowed to run at a time. This

provides a mutually exclusive relationship to protect data structures used in

two background routines. If a background routine uses a data structure that

can be modified by a routine running as a result of an interrupt, the

background routine must enable/unmask around the critical section to protect

the data structure from corruption.

Appendix G contains details about the EXEC background and call -guarded modes.

7.4.2.2 Using the BKGRND and SET BAB Macros . Macros that help the driver

writer set up an environment for using the background routines are found in

file 9995.. UTILITY. MC. These macros simplify the process described in

Appendix G by performing the functions of the BKGSCHEDULE and ENTRY macros.

SETBAB Macro

The Background Activation Block (BAB) is illustrated in Figure 7-1.

75 MICROSYSTEMS

(^ MOTOROLA TERMLIB

+ + +-

$ BABLNK
1 1 1

+ + +-

$ 4 BABPTR
1 1 1

+ + +-

$ 8 BABUSE
1 1

+ + +-

$ 9
1 1 1

+ + +-

--+ +

I I
> Forward link to next BAB in queue

•--+ +

I
|--- > Pointer to routine to be

--+ + executed when background runs
-> Flag used by EXEC: true (nonzero)

--+ means BAB in use

I

> Reserved (should be zero)

BABBLN = $C = length of a BAB

FIGURE 7-1. Background Activation Block Structure

D

The SET_BAB macro requires two arguments: the label for the start of the

routine to be executed when the background mode runs, and the prefix (name) of

the label for the BAB (where the label for the BAB is of the form <name>_BAB.)

This macro installs the address of the routine to be executed when the

background mode runs into the BABPTR field of the BAB. TERMLIB uses this

macro in TERM_INIT to set up its BABs. The device-dependent module should

also use the SETBAB macro during its device-dependent initialization to set

up any device-dependent BABs. Figure 7-2 illustrates an example of the

SET BAB macro.

Call:

Result:

SET BAB RECVO.RECV

A pointer to RECVO is installed in the RECVBAB BAB

-+-

RECV BAB:

+ + + + +

I I I I I

+ + + + +

I I I I I-

+ + + + +

I I

+ + + +

I I I I

+ + + +

> RECVO: to be executed
when background mode runs

NOTE: The SET_BAB macro destroys the contents of register AO.

FIGURE 7-2. SET_BAB Macro Example

76 MICROSYSTEMS

(^ AfOTOnOLA TERMLIB

BKGRND Macro

The BKGRND macro moves the BAB address from the CCB into address register AO,

and then executes a JSR to the address of the background scheduler routine in

EXEC (provided by the ENTRY call).

The BKGRND macro requires two arguments. The first is the prefix (name) of

the label (<name>_BAB) of the BAB. The second is the label of the offset in

the CCB where the address of the EXEC's scheduler is found; the default is

SCHED_EP. This address is installed in the CCB during initialization.

The scheduler's address is obtained through a TRAP #0 call. TERMLIB uses the

BKGRND macro to call its background routines after initialization. A routine

already running in background mode can also call a background routine,

including itself. The device-dependent module should use the BKGRND macro to

call any background routines that must be called.

Call:

Result:

BKGRND RECV

The background routine pointed to by BABPTR in the RECV_BAB back-

ground activation block will execute at some time in the future.

7.4.2.3 How to Write a Background Routine . When a BAB has been set up, the

BABPTR offset is pointing to some code, and the background routine is called,

driver writers know that Al contains the address of the BAB. However, they

must find their CCB address. Because their BAB is in the CCB, they can take a

negative offset from Al to discover the CCB address.

For example, in the RECV background routine, driver writers should do the

following:

RECVO:

LEA -RECV_BAB(A1),A5
MOVE.L CCBCHB(A5),A1
MOVE.L DRV_ADDR(A5),A4

They are now set up with their CCB address in A5, their device-dependent

address in Al, and the address of their device-dependent module in A4. They

are free to destroy any registers they choose.

7.4.2.4 RECV. The RECV background routine is not called directly by the

device-dependent module. It is called from the following three locations:

a. From DISPATCH when the driver has a command to perform a formatted or

image mode read.

b. From the background routine XMIT when the transmit state is idle and

the WAIT_TQ flag is set.

^^ MICROSYSTEMS

@ MOTOROLA TERMLIB

B

c. From the routine TERM_GOT_CHAR, which is called because the driver has

received a receive character interrupt from the device, the character
is not special, and the receive queue is not full.

The RECV background routine does the following:

a. Checks the RECV_ST, RQCNT, and TQ_CNT flags to make sure the driver
has a character to receive and that there is room in the transmit
queue. If there is room in the transmit queue, RECV clears the
WAITTQ flag; otherwise, it sets the flag.

b. Checks to see if there is an error on the character.

c. If the driver passes all these tests, then RECV retrieves the

character from the receive queue.

d. If the driver was stopped but there is enough room in the receive
queue after this character is removed, the driver reactivates the
device.

e. Then the driver jumps to the proper routine according to its receive
state. It could be idle, reading in image mode, or reading in

formatted mode.

f. If the driver is idle, it just returns (RTS).

g. If the driver is reading in image mode, it checks for room in the
user's buffer, echoing, and termination characters. If putting this
character in fills the user's buffer and the driver is configured to

terminate when the buffer is full, then the driver clears the receive
state, calls XMIT in the background, and returns (RTS). Otherwise, it

calls TERMTST and then branches to RECV to try again.

h. If the driver is in format mode, the situation is more complicated.
If the character is a terminating character, the driver sets up to

transmit an end-of-line string, clears the receive state, calls the
background routine XMIT, and returns (RTS). If the character is a NUL

or non-ASCII, it sets up to transmit a BEL and then branches to RECV

to try again. If the character is a DEL or a backslash, the driver
performs some logic to remove the character and then branches to RECV.

If the character is a reprint line character, the driver sets up to

transmit end-of-line, changes the menu to "reprint", clears the

receive state, and calls background routine XMIT.

If the character is the cancel line character, and the driver is

echoing and is not a hardcopy device, the driver loads CANCEL into the

menu, clears the receive state, and calls background routine XMIT.

If the character is the cancel line character, and the driver is not

echoing and is not a hardcopy device, the driver sets up to transmit a

backslash and end-of-line string, calls background routine XMIT, and

branches to RECV.

^^ MICROSYSTEMS

® MOTOROLA TERMLIB

If the character is ordinary data, and the RBUF is not full, the
driver loads the character in the RBUF user's buffer. If the driver
is echoing, it takes care of that. If the driver is configured to
terminate when the RBUF is full and it is full, the driver sets up the
transfer length, sets up to transmit the end-of-line string, clears
the receive state, calls background routine XMIT, and returns (RTS).
If the driver is not configured to terminate when the buffer is full,
or if the buffer is not full, the driver branches to RECV.

7.4.2.5 BREAK . The BREAK background routine is called by the TERM_GOT_CHAR
routine and the TERMBREAK routines in TERMLIB. BREAK is also called by
device-dependent routines when a break is detected.

BREAK works in the following way:

a. If the driver is not ready to report breaks (i.e., if no command has
been received), is in transparent mode, or is down or inactive, BREAK
just returns (RTS).

b. Otherwise, if the driver is not performing I/O, BREAK sends an
unsolicited device event. If I/O is being performed, BREAK sends a

completion event with the ISTABRK error code.

c. BREAK then resets the device.

7.4.2.6 XMIT . XMIT is frequently called from other routines in TERMLIB.
TERM_TBE calls XMIT when a transmit-buffer-empty interrupt is received. The
background routines RECV, UNBLK, STOP, and E_BRK call XMIT, as do the
subroutines TERM_TST, DISPATCH, UNSTOP, Q4_XMIT, and Q_XMIT. Also, when a

command has been received and the driver wants to start I/O, it calls XMIT.

The XMIT background routine does the following:

a. If the transmit buffer is not empty, XMIT just returns (RTS).

b. Otherwise, XMIT jumps to one of the routines corresponding to the
transmit state (XMITST). These routines are

1. X_IDLE

2. X_IMAGE

3. XFORMAT

4. X_CANCEL

5. X REPRNT

Clear transmit state.

Write in image mode.

Write in formatted mode.

Cancel a line.

Reprint a line.

79 MICROSYSTEMS

® MOTOROLA TERMLIB

X_SPECIAL The SPECIAL word contains bits which correspond to

the following routines. Save the old transmit state

and perform one of these for a while.

(a) X_BREAK NOP

(b) X_XOFF Clear SPEC_XOFF bit in SPECIAL, put out the XOFF

character.

(c) X_XON Clear SPEC_XON bit in SPECIAL, put out the XON

character.

(d) X_BLOCK

(e) X_NUL

(f) X_QUEUE

NOP

If NUL_CNT is not zero, subtract 1 from NUL_CNT and

put out NUL character. If NUL_CNT is zero, clear

the SPEC_NUL bit in SPECIAL.

If TQCNT is not zero, remove a character from the

transmit queue. Put out the character. If TQ_CNT
is zero, clear the SPEC_QUEUE bit in SPECIAL.

ROUTINES CALLED IN XMIT EXECUTION

The following routines, with the exception of DISPATCH and X_F_TERM, are

called by the XMIT routine. The transmit state (XMIT_ST) determines which

routine is called. XIDLE branches to the DISPATCH subroutine, which calls

XMIT. X_FORMAT branches to the X_F_TERM background routine, which calls XMIT.

X IDLE

The XIDLE background routine performs as follows:

a. If the driver had a task to do the last time the RECV background
routine was called, but the transmit queue was too full (WAITTQ
not 0), then XIDLE calls background routine RECV.

b. If RECV was not waiting on the transmit queue, and the receive

state is not IDLE, then XIDLE returns (RTS).

c. If RECV was not waiting on the transmit queue and the receive

state is IDLE, then XIDLE branches to the DISPATCH subroutine and

returns (RTS).

80 MICROSYSTEMS

(8) MOTO^OI-A
'''''''

DISPATCH

DISPATCH reads the next item to determine what type of I/O to do next. If

the driver is down or inactive, DISPATCH returns (RTS).

If it is a transmit-type item, DISPATCH sets up the transmit state to

correspond to the state of the item, and calls background routine XMIT.

Transmit-type items are the following:

a. S IDLE Idle

b. S IMAGE Do image write

c. S FORM Do format write
d. S CANCEL Cancel line

e. S REPRNT Reprint line

f. S SPECIAL Do a special routine

If it is a receive-type item, DISPATCH clears LASTBS and sets the receive

state to correspond to the menu item. If necessary, it clears the type-

ahead buffer. It then calls background routine RECV. Receive-type menu

items are the following:

a. SJDLE Idle

b. S_IMAGE Image read

c. S_FORM Formatted read

If it is neither a transmit-type menu item nor a receive-type menu item,

then the driver assumes an end menu item and sends a completion event to

lOS. It then returns (RTS).

X_IMAGE

XIMAGE performs the following actions:

a. If the driver is past the end of the WBUF buffer, X_IMAGE sets up

the transfer length (if a write was in process), clears the

transmit state, and branches to XIDLE.

b. Otherwise, it puts the character into DO and branches to XMITDO.

X_FORMAT

The XFORMAT routine performs as follows:

a. If the driver is past the end of the WBUF buffer, or if the

character in the buffer is a carriage return, XFORMAT branches to

X_F_TERM.

b. Otherwise, it updates the WBUF pointer. If the character is

printable, XFORMAT adds 1 to the column count. It then branches

to XMIT DO.

B

81 MICROSYSTEMS

B

(§) MOTOROLA TERMLIB

X_F_TERM

The X_F_TERM background routine does the following:

a. Clears the transmit state, and sets up the transfer length if the

driver is executing a Write command.

b. If driver is configured with either a zero or positive line
length, and the number of printable characters is not an exact
multiple of the line length, X_F_TERM puts the end-of-line string
into the transmit queue and branches to subroutine Q4_XMIT.

c. It then branches to XMIT.

X_CANCEL

The X_CANCEL background routine performs according to the following rules:

a. If character count is zero, X_CANCEL clears the transmit state and

branches to X_IDLE.

b. Otherwise, it subtracts 1 from the character count; sets up to

transmit backspace, space, backspace, by branching to subroutine
Q4_XMIT; and then returns (RTS).

X_REPRNT

The X_REPRNT background routine executes the following sequence:

a. If everything has been reprinted, XREPRNT clears the transmit
state and branches to XIDLE.

b. Otherwise, it locates next character from the WBUF buffer and adds

1 to the character count. If this is a control character, X_REPRNT
puts a caret symbol {^) followed by the character's visible
counterpart into the transmit queue using Q4_XMIT; it then
returns.

c. If this is not a control character, XREPRNT puts the character
into DO and branches to XMIT DO.

MICROSYSTEMS

© MOTOfiOLA TERMLIB

X_SPECIAL

The XSPECIAL background routine tests bits in the SPECIAL word to
determine which task to do. Requested tasks are done in the following
order:

X_BREAK
X_XOFF
X_XON
X_BLOCK
X_NUL
X_QUEUE

If none of the specified bits are set in the SPECIAL word, then the previous
transmit state is restored and the driver branches to XMITJMP, which
dispatches to one of the transmit state routines.

X_BREAK

NOP

X_XOFF

The X_XOFF task clears the X_XOFF bit in the SPECIAL word and sends the
XOFF character by branching to FORCE_D0.

X_XON

The X_XON task clears the X_XON bit in the SPECIAL word and sends the XON
character by branching to FORCE_D0.

X_BLOCK

NOP

X_NUL

If NUL_CNT is zero, the X_NUL task clears the bit for X_NUL and branches
to XSPECIAL. Otherwise, it puts NUL in DO, subtracts 1 from NUL_CNT, and
branches to XMIT DO.

X_QUEUE

If transmit queue count is zero, then the XQUEUE task clears the bit for
XQUEUE and branches to X_SPECIAL. Otherwise, it gets the next character
from the transmit queue and branches to XMITDO.

®^
MICROSYSTEMS

B

(^ MOTOROLA TERMLIB

B

XMIT_DO

If the driver is discarding output, the XMITDO task then clears NULCNT,
empties the transmit queue, and moves the WBUF buffer pointer past the end

of the buffer. It clears either the previous transmit state or the

current transmit state, depending on whether or not the driver is in

special mode. Then XMITDO branches to XMIT.

If the driver is not discarding output, then XMITDO puts the character in

DO. If it is a carriage return or a line feed, and the driver is

configured for null padding, XMITDO sets the bit for XNUL in SPECIAL.
Then it returns (RTS).

SUBROUTINES USED IN XMIT EXECUTION

The subroutines described in the following paragraphs are often used during
execution of the XMIT background routine.

Q4_XMIT

The Q4_XMIT subroutine is called by routines that must put up to four
characters in the transmit queue, set up the state as special, set the bit

for XQUEUE, and call background routine XMIT.

Q_XMIT

The QXMIT subroutine is called by routines that must put one character in

the transmit queue, set up the state as special, set the bit for X_QUEUE,
and call background routine XMIT.

SET_SPECIAL

The SET_SPECIAL subroutine is called by routes that must, if the driver is

not running something special, save the current transmit state and change
the current transmit state to special.

7.4.2.7 BLOCK . The background routine BLOCK is called by the subroutine
TERM_GOT_CHAR when the received character is XOFF.

7.4.2.8 UNBLK . The background routine UNBLK is called by the subroutine
TERM_GOT_CHAR when the driver is BLOCKED and the received character is XON, or
when the driver is configured to accept any character as an XON.

^* MICROSYSTEMS

(g) MOTOROLA TERMLIB

7.4.2.9 STOP. Background routine STOP is called by subroutine TERM_GOT_CHAR

when the received character is not a special character, the driver must put it

into the receive queue, and the receive queue is nearly full.

7.4.2.10 BBRK . B_BRK is never called as a background routine in TERMLIB;

instead BEG_BREAK, its subroutine entry point, is called in a call-guarded

manner by XMIT_BRK, the command from lOS that requests the driver to transmit

a break. BEG_BREAK calls the device-dependent subroutine DDP_BEG_BREAK to

send the break signal, sets up for execution of a special routine, sets the

bit for BREAK in the SPECIAL word, and uses a periodic activation call to set

up a timer that will start execution at the routine STOPBRK.

7.4.2.11 STOP BRK . The STOPBRK background routine performs as follows:

a. If the driver is in transparent mode, STOP_BRK calls DDP_END_BREAK to

prevent the device from sending the break. Then it jumps (JSR) to the

user's break-is-over routine.

b. If the driver is not in transparent mode, STOP_BRK calls background

routine E_BRK to stop the break signal.

c. RTE from the timer interrupt.

7.4.2.12 E BRK . The E_BRK background routine is called by STOP_BRK when the

periodic activation call has notified the driver that it is time to end a

break.

7.4.3 Transparent Mode Routines as Implemented In TERMLIB

Transparent mode, which is described in the following paragraphs, is used by

the CONNECT utility.

7.4.3.1 How Transparent Mode Is Set Up . With the driver's transparent mode

bit (15) set in the attributes word and attributes mask, a Configure-Defaults

command is received from IOC. The driver sets the flag TR_MODE, gets the

address of the transparent mode branch table from the Configure/Status Block

(CSB), validates and converts the address from logical to physical, and saves

it in HIS_BRA_TABL in the CCB.

Then the driver exchanges the address of its transparent mode branch table for

the address the user designated.

The driver then writes to the CSB the contents of its A5 register and the

interrupt level at which it must be entered.

The user's CSB on entry to the Configure-Defaults command is diagrammed in

Figure 7-3.

B

^^ MlCROSYSTEmS

® MOTOROLA TERMLIB

user's + +

CSB >
I I

+ +

+ + +-

$2A luser's bra table | >
|

+ + +-

$2E
I II
+ + +-

$32
I I I

+ + +-

+
1- --> TM RCA
+

1- --> TM TBE
+
1-

1

--> TM..BRK_RECV

1

1- --> TM BRK OVER
+

FIGURE 7-3. User CSB Entering Configure-Defaults Command

The user's CSB on exit from the Configure-Defaults command is diagrammed in

Figure 7-4.

B
user's +
CSB >

I

+ + + +

$2A Idriver bra table |---->
|

|---> TM_OUTPUT
+ + + +

$2E Idriver A5 |
|

|---> TM_BREAK
+ + + +

$32 lint lvl|

+ +

FIGURE 7-4. User CSB Exiting Configure-Defaults Command

^^ MICROSYSTEMS

® MOTOROLA TERMLIB

After the driver is configured for transparent mode, the user can directly
call the TM_OUTPUT and TMBREAK routines. The only commands allowed from lOS

are lOSTAT (Status) and lOCHDC (Change-Default-Configuration). Also, some

driver routines call user routines, as follows:

TERMGOTCHAR calls transparent mode TM_RCA
TERMTBE calls transparent mode TM_TBE
TERM_BREAK calls transparent mode TM_BRK_RECV
STOP_BRK calls transparent mode TM_BRK_OVER

Background routine BREAK does nothing if the driver is in transparent mode.

7.4.3.2 TMOUTPUT . Background routine TM_OUTPUT calls the device-dependent
routine PUTCHAR to output the character in DO, sets the Condition Code
Register (CCR) to <EQ>, and returns (RTS).

7.4.3.3 TMBREAK . The background routine TMBREAK disables interrupts,
causes the device to send a break by calling DDP_BEG_BREAK, and sets up a

periodic activation call so that, when the timer goes off, execution will

begin at STOP_BRK. It then sets the CCR to <EQ> and returns (RTS).

7.5 WRITING THE DEVICE-DEPENDENT MODULE

In most ways, the device-dependent module looks like other drivers. However,

a branch table to device-dependent routines must be installed near the start,

immediately after the required service vector table, at offset $28. Also,

because DRVLIB and TERMLIB are in sections 15 and 14, respectively, code in

the device-dependent module should be in a different section, such as or 8.

7.5.1 Tables and Routines Required by TERMLIB

The following paragraphs describe the tables and routines required by TERMLIB.

7.5.1.1 Branch Table . Users should place the following branch table at

D
et $28 from the beginning

BRA.L PUT CHAR
BRA.L CK TBE
BRA.L DDP RESET
BRA.L SETUP
BRA.L CLOCK RESET
BRA.L GET STAT
BRA.L DDP STOP
BRA.L DDP UNSTOP
BRA.L DDP BEG BREAK
BRA.L DDP END BREAK

^^ MICROSYSTEMS

B

(g) MOraROLA
'''''''

7.5.1.2 Initialization Requirements . Device-independent initialization will

be performed in TERM_INIT, and device-dependent initialization should be done

in a DOINIT subroutine, which should be called in a call-guarded manner:

LEA DO_INIT(PC),A0
MOVE.L #TOGUARD,DO
TRAP #0

DOINIT must accomplish the following:

a. Load starting address of the driver into the CCB at offset DRVADDR.
TERMLIB uses this address to jump to the device-dependent routines.

For example, if the label at the start of a driver is MYDRVR, then the

following commands should be in DOINIT:

LEA MYDRVR (PC), AC
MOVE.L A0,DRV_ADDR(A5)

b. Set up the BABs for any device-dependent background routines used by a

driver.

If users have a device-dependent background routine, they must have

reserved 12 bytes for the BABs in the device-dependent part of the

CCB, following the offset TERMDDP.

The label on a BAB should be xxxx_BAB, where xxxx is chosen by the

user. For example, if users need a background routine for a DSR

interrupt, they allocate storage in the CCB as follows, using the

RESERVE macro from file 9995. .UTILITY. MC:

OFFSET TERMDDP
RESERVE. 12 DSR_BAB

In DOINIT, users must load the addresses of the background routine

into the BAB. If the entry point for the DSR background routine is

DSRO, then the SET_BAB macro must be used:

SET_BAB DSRO, DSR

The DSRO address will be installed in the DSR_BAB BAB.

Care is required because the SET_BAB macro destroys the contents of

register AG.

Users may now perform any necessary device-dependent initialization.

^® MICROSYSTEMS

® MOTOROLA TERMLIB

7.5.1.3 PUT CHAR; Put Out a Character to the Device . PUTCHAR writes the
character in DO.B to the device. This routine is called by XMIT DO (FORCEDO)
and TMOUTPUT in TERMLIB. Entry and exit conditions are describeH below.

Entry: A5 = address of CCB
A4 = address of driver
Al = address of the driver's side of the chip
DO.B = character to transmit

Exit: All registers should be the same as on entry.
The interrupt level must remain the same as on entry.

7.5.1.4 CK TBE: Check to See if the Transmit Buffer Is Empty . CKTBE tests
to see if the transmit buffer is empty. This routine is called by XMIT in

TERMLIB. Entry and exit conditions are described below.

Entry: AS = address of CCB
A4 = address of the driver
Al = address of the driver's side of the chip

Exit: All registers should be the same as on entry.
CCR: <NE> = transmit buffer empty

<EQ> = transmit buffer not empty
The interrupt level must remain the same as on entry.

7.5.1.5 DPP RESET; Device-Dependent Reset . The DDP_RESET routine performs
the device-dependent reset. The TERMLIB RESET routine clears the queues,
flags, and other device- independent items. DDPRESET is called by DOHALT,
DO_CONFIGURE, RECV, and BREAK in TERMLIB. Entry and exit conditions are
described below.

Entry: AS = address of CCB
A4 = address of driver
Al = address of the driver's side of the chip
AO = address of event in some cases

Exit: All registers should be preserved.
The interrupt level must remain the same as on entry.

7.5.1.6 SETUP; Set Up the Device According to the Configuration . SETUP uses
the working configuration in the CCB to set up the device. This routine is

called by DOCONFIGURE. Entry and exit conditions are described below.

Entry: AS = address of CCB
A4 = address of driver

Exit: All registers should be the same as on entry.
The interrupt level must remain the same as on entry.

^^ MICROSYSTEMS

B

,<-jN TERMLIB

Q^ MOTOROLA

7.5.1.7 CLOCK RESET; Reset the Clock . CLOCKRESET resets the onboard clock,

if one exists, to its default value. If there is no clock, this routine

returns (RTS). The CLOCK_RESET routine is called by DO_CONFIGURE. The

device-dependent routine may use CLOCK_RESET while in DETECT_BAUD mode. Entry

and exit conditions for CLOCKRESET are described below.

Entry: A5 = address of CCB
A4 = address of driver
Al = address of the driver's side of device

AO = address of Configure/Status Block

Exit: All registers should be the same as on entry.

The interrupt level must be restored to what it was on entry.

7.5.1.8 GETSTAT; Get Device Status . GETSTAT prepares the device status

byte which contains, if the module is capable of sensing it, the condition of

the DSR line (which indicates device ready/unready). It sets such bits as

XDSDCD, XDSABR, and XDSNRB in the MPSC driver. This routine does not set the

break indicator in the device status byte.

GET_STAT is called by

a. REQ_STAT, a handler for the lOSTAT command. On return from

GETSTAT, DO.B is moved into the lOSDST field of the user's lOCB.

b. CHNGDEF, the handler for the lOCHDC command. On return from

GET_STAT, DO.B is moved into the lOSDST field of the user's CSB.

c. IO_COMN, the handler for the READ, WRITE, and OUTWINP commands.

On return from GET_STAT, the XDSNRB (not ready) bit is checked;

if the device is not ready, the ISTANR (not ready) error message

is returned.

d. BREAK, a background routine. If the driver receives a break

while performing I/O, then it sends back an unsolicited event to

lOS. On return from GET_STAT, the driver sets the XDSBRK (break)

bit and returns the contents of DO in the XRPDST (device status)

field of the event.

e. DO_CONFIGURE, to put the latest status in the user's CSB.

^° MICROSYSTEMS

(^ MOTOROLA TERMLIB

Entry and exit conditions for GETSTAT are described below.

Entry: A5 = address of CCB
A4 = address of driver
A3 = address of lOCB (IO_COMN)
Al = address of user's data block (REQ_STAT)

Al = address of event (BREAK)

Al = address of data to copy into DCB (CHNGDEF)
AO = address of user's CSB (CHNG_DEF and DO_CONFIGURE)

AO = address of event area (BREAK)

Exit: All registers should be restored.
The interrupt level should be the same as on entry.

7.5.1.9 DPP STOP; Device-Dependent STOP . DDP_STOP stops the device from

transmitting. DDPSTOP is called by STOP, a background routine in TERMLIB.

If the driver is not configured for XON/XOFF, then TERMLIB calls on DDP_STOP

to physically act on the device to stop transmission. Entry and exit

conditions are described below.

Entry: A5 = address of CCB
A4 = address of driver
Al = address of the driver's side of device

Entry interrupt level: INHIBITED

Exit: All registers should be the same as on entry.

The interrupt level must remain the same as on entry.

7.5.1.10 DPP UNSTOP: Device-Dependent UNSTOP . DDP_UNSTOP is the device-

dependent part of the UNSTOP routine in TERMLIB. When the driver is not using

XOFF/XON, it unstops the device in its own device-dependent way. When this

routine is called, the driver is running in background mode, at interrupt

level 0. DDP_UNSTOP is called by UNSTOP in TERMLIB.

Entry: AS = address of CCB
A4 = address of driver
Al = address of the driver's side of device

Entry interrupt level: INHIBITED

Exit: All registers should be preserved.
The interrupt level must remain the same as on entry.

^^ MICROSYSTEMS

(^ MOTOROLA
TERMLIB

B

7.5.1.11 DPP BEG BREAK; Device-Dependent Begin BREAK . DDP_BEG_BREAK writes
whatever it must to the chip to transmit a break. DDP_BEG_BREAK is called by

TM_BREAK and by BEGJREAK, a background routine in TERMLIB. DDP_BEG_BREAK is

called by TMBREAK in TERMLIB. Entry and exit conditions are as follows.

Entry: A5 = address of CCB
A4 = address of driver
Al = address of the driver's side of device

Entry interrupt level: INHIBITED

Exit: All registers should be preserved.

7.5.1.12 DPP END BREAK: Device-Dependent End BREAK . DDP_END_BREAK writes
whatever it must to the chip to prevent transmission of a break. DDP_END_BREAK
is called by STOPBRK, a special interrupt service routine for the timer
interrupt to stop the break signal, if the driver is in transparent mode.
DDPENDBREAK is also called by END_BREAK, a background routine in TERMLIB.
Entry and exit conditions are described below.

Entry: AS = address of CCB
A4 = address of driver
Al = address of the driver's side of device

Entry interrupt level: INHIBITED

Exit: AS = address of CCB
D0,A0,A1,A4 = irrelevant
All other registers must be preserved.

7.5.2 Required INCLUDE Files

The following INCLUDE files are normally required for most device drivers:

999S.&.I0E.EQ
9995.&.STR.EQ
9995.&.TCB.EQ
999S.&.NI0.EQ
999S.&.LV5.EQ
999S.&.CCB.EQ
999S.&. TERMINAL. EQ
9995. &. UTILITY. MC
9995.&.TERMCCB.EQ
9995. &. BAB. EQ

7.5.3 An Example: The MPSC Driver Structure

Figure 7-5 illustrates the structure of the MPSC driver, which can be used as

a model for serial drivers under VERSAdos. Device- independent code was moved
to TERMLIB, leaving only the device-dependent driver code in the MPSC driver.

^^ MICROSYSTEMS

(^ MOTOROLA
TERMLIB

SERVICE VECTOR
TABLE

BRANCH TABLE TO
DEVICE-DEPENDENT
ROUTINES

INIT:

BSR TERM_INIT
IF <NE> THEN

IF <PL> THEN
TRO$. KILLER ,

ELSE
I

RTS
I

ENDI
I

ENDI
I

LEA DO_INIT{PC),AO
MOVE.L #TOGUARD,DO
TRAP #0

I

RTS
I

I

I

COMMAND: |

Do any device-dependent tasks
BSR.L TERM_COMMAND|
RTS

I

I

INTERRUPT:
|

Jump table of entry
points used by

|

supervisor driver
|

I

1

I
RCA400:
RCA:

I

BSR.L TERM_GOT_CHAR
BRA.L INT_EXIT

I

I

FIGURE 7-5. MPSC Driver Structure (Sheet 1 of 4)

93 MICROSYSTEMS

(^ MOTOROLA TERMLIB

ES400:

ES:

If a DCD transiti
BKGRND DCD

on,

If a break,
BSR.L TERM BREAK

BRA.L INT EXIT

SRC400:
SRC:

BSR L LOG ERR

BRA.L INT EXIT

DSR400:
BKGRND DSR
BRA.L INT EXIT

RI400:

BKGRND DSR

BRA.L INT EXIT

INT_EXIT:
Restore registers
Set the carry bit
and RTS

FIGURE 7-5. MPSC Driver Structure (Sheet 2 of 4)

94 MICROSYSTEMS

(M) MOTOROLA TERMLIB

CLOCK RESET:

PUT CHAR:

CK TBE:

DDP RESET:

SETUP:

GET STAT:

DDP STOP:

DDP UNSTOP:

FIGURE 7-5. MPSC Driver Structure (Sheet 3 of 4)

95 MICROSYSTEMS

® MOTOROLA TERMLIB

DDP BEG BREAK:

DDP END BREAK:

DO INIT:

Do the required setup for TERMLIB
Do any device-dependent tasks
BSR.L RESET |

BSR.L DDP RESET I

B

If channel is down,
BSR.L MARK_DOWN |

I

RTS
I

DSRO:
DSR:

If driver is waiting for DSR high,

BKGRND BREAK
|

ELSE
I

BSR.L TERM_UNRDY|
IF <NE> THEN

|

TRO$. KILLER , |

ENDI
I

I

RTS
I

DCDO:
I

DO_DCD:
I

I

If driver is to report DCD transitions,
BKGRND BREAK |

I

If driver is configured to do auto baud rate detection,

BSR.L RESET |

BSR.L DDP_RESET
|

BSR.L CLOCK_RESET|

I

I

RTS

FIGURE 7-5. MPSC Driver Structure (Sheet 4 of 4)

96 MICROSYSTEMS

® MOTOROLA TERMLIB

7.6 SYSGENING THE NEW DRIVER INTO VERSAdos

7.6.1 TCHTYPE.AG

The TCHTYPE.AG file is assembled at SYSGEN time, and a listing is included in

the SYSASML.LS listing. This file contains a table of information for each

serial port that may use TERMLIB. TCHTYPE.RO is linked with TERMLIB. RO to

produce TERMLIB. TF at SYSGEN time. Figure 7-6 illustrates the TERMLIB. TF file

structure.

+ +

+ link to TCHTYPE

termlib.ro

+--- > TCHTYPE.RO

I

+

FIGURE 7-6. TERMLIB. TF Structure

Each port that wants to use TERMLIB must have an entry in TCHTYPE with the

following information:

Channel type (byte)
Driver code (byte)

Attributes mask (word)
Parameters mask (word)
Mask of recognized baud rates (longword)

This required information is described in the following paragraphs.

D

97 MICROSYSTEMS

® MOTOROLA TERMLIB

B

7.6.1.1 Channel Type. The channel type is defined in file 9995.. JOE. EQ, and
is a number in the range $60 through $7F. Some of the channel types that have
already been defined are as follows:

XTS7A2 $60 VM02, Side A
XTS7B2 $61 VM02, Side B

XTS7AR $64 MVME400, Side A
XTS7BR $65 MVME400, Side B

$59 Reserved
XTSMFP $6C MVME120 (only one side)

$6D Reserved
XTMPCl $72 MVME050, Port 1

XTMPC2 $73 MVME050, Port 2

XTS7A3 $74 VM03, Side A
XTS7B3 $75 VM03, Side B

XTSIOO $76 VM04, Port
XTSIOl $77 VM04, Port 1

XTSCCO $78 MVME117, Port
XTSCCl $79 MVME117, Port 1

If a module has two ports, then port A is assigned the even number and port B

the next odd number. If a module has only one port, then its port is assigned
an even number and the next odd number remains unassigned.

In the TERMJNIT routine in TERMLIB, the TCHTYPE table is searched, and the
channel type for each entry is compared with the channel type from the CCB.

If the channel type is found in the TCHTYPE table, the information that
follows is copied into the CCB in the DRV_CODE, REC_ATT, REC_PAR, and REC_BAUD
fields. TERMLIB divides the channel type by 2 to determine the value for the
BOARD entry in the CCB. The BOARD entry is used by the MPSC driver to
determine if the device it is currently driving is an M68KVM02 or an MVME400
module.

If the channel type is not found, then the channel is marked down.

7.6.1.2 Driver Code . The driver code is defined in file 9995. .lOE.EQ. Some
of the driver codes that have already been defined are as follows:

lODMPSC $01 MPSC driver for VM02, VM03, and MVME400
lODMPCC $03 Terminal driver for MVME050
lODMFP $0B MFP driver for MVME120
lODSIO $0E Terminal driver for VM04
IODVM22 $21 Driver for VM22 disk controller

7.6.1.3 Attributes Mask . The attributes mask is the mask of all attributes
that are recognized by the driver. Any Configure or Configure-Defaults
command must have an attributes mask in its lOCB that is a subset of the
attributes mask found in TCHTYPE.

98
MICROSYSTEMS

® MOTOROLA TERMLIB

7.6.1.4 Parameters Mask . The parameters mask is the mask of all parameters
that are recognized by the driver. Any Configure or Configure-Defaults
command must have a parameters mask in its lOCB that is a subset of the
parameters mask found in TCHTYPE.

7.6.1.5 Mask of Recognized Baud Rates . The baud rate codes are consecutive
numbers in the range $00 through $1F. Each of these codes corresponds to a
baud rate (refer to the VERSAdos Data Management Services and Program Loader
User's Manual). Setting a bit in the longword in this entry in TCHTYPE means
that the corresponding baud rate code is legal for this channel. Clearing the
bit means that the corresponding baud rate code is not legal for the channel.

7.6.2 MYDRIVER.CI

The following file is INCLUDEd at SYSGEN time to add the new driver.

In <system>.CNFGDRVR.CI:

NOMYBOARD = 1

In <system>.IFDRVR.CI:

IFGT \NOMYBOARD
INCLUDE MYDRIVER.CI
ENDC

MYDRIVER.CI:

MYDRIVER = *

SUBS &. MYDRIVER. LG

EXCLUDE DRVL
EXCLUDE TERM
LINK &. MYDRIVER. LG
IFEQ \LINKLS

=COPY \LINKLS,\WORKLS;A
ENDC
PROCESS &. MYDRIVER. LO
END &. MYDRIVER

^^ MICROSYSTEMS

,nx TERMLIB
QJ^ MOTOROLA

7.6.3 MYDRIVER.LG

The following file is MYDRIVER.LG:

=/*
=/* MYDRIVER.LG -- SYSGEN chainfile to link new subordinate driver.
=/*
=/* SYSGEN parameter LINKLS = \LINKLS = file/device to which
=/* to send the linker listing.
=/*
=/* SYSGEN parameter MYDRIVER = \MYDRIVER = address at which to link
=/* driver.
=/*

=LINK ,&. MYDRIVER. LO,\LINKLS;HAMIXS
SEGMENT MYDR:0-13 \MYDRIVER
SEGMENT DRVL:15 \DRVL
SEGMENT TERM: 14 \TERMLIB
INPUT &. MYDRIVER.ro
INPUT &.DRVLIB.RO
INPUT &. TERMLIB. TF
END
=END

H

^°° MICROSYSTEMS

(g) MOTOROLA DEBUGGING THE DRIVER

CHAPTER 8

DEBUGGING THE DRIVER

8.1 INTRODUCTION

This chapter describes techniques for debugging device drivers which may be

helpful in analyzing a repeating system crash or determining why a system does

not boot.

8.2 DRIVER DEBUGGING TECHNIQUES FOR VERSAdos

When a system will not boot, the reason can often be traced to the addition of

a new piece of code, in the form of a device driver or operating system tas'

that would run during boot time. This paragraph explains suggested approache

for debugging device drivers. It is not intended to restrict driver writer

to one method of debugging.

EXORmacs Example :

When enough of the driver has been coded, it should be SYSGENed into the

operating system and booted from MACSbug using the BH command. Breakpoints

can then be set, using MACSbug, at points of interest in the driver, the

addresses of which can be obtained from the SYSGEN map. Good breakpoints

might be the start of the initialization, command service, and interrupt

service routines. On the break, MACSbug can then be used to trace, display,

or set memory in the normal way. (Refer to the note in the next example).

By repeatedly adding new code sections to the driver, SYSGENing in the driver,

and booting the system with the MACSbug BH command, the new driver can be

brought into service.

NOTE

If the driver is SYSGENed in after other processes, the

restart option of SYSGEN could be used to reduce SYSGEN

time.

MVME120 Driver Example :

This example assumes that a device driver has been written for an MVME120

module and is being integrated into the VERSAdos operating system. At this

point in the example, a SYSGEN has successfully been completed to include the

code module.

Throughout this example, user entries are shown in boldface type.

^°^ MICROSYSTEMS

D

B

®.^^-*-^»^. - DEBUGGING THE DRIVERMOTOROLA

Remembering that there are only three entry points to the driver, start by

setting breakpoints at each of the entry points and then tracing from that

point. To accomplish this end, first use the debug monitor (in this case, the

MVME120 Debug Monitor) Boot Halt command.

MVME120 x.y > BO 0,0, ;H Causes the Initial Program Loader (IPL) to bring

in VERSADOS.SY and then return control to the

MVME120 Debug Monitor.

Next, modify the illegal -instruction vector so that it remains pointing at the

MVME120 Debug Monitor's breakpoint routine. Normally, when the processor is

reset, the MVME120 Debug Monitor initializes all the MC68010 vectors from $0

to $400. When the operating system gains control at boot time, the vectors

are initialized to point to the various system routines to handle the

interrupt or exception.

The vector initialization table can be changed so that the system initialized

does not change the illegal -instruction vector, which is at address $10.

(Normally, the vector table is in the first $100 bytes of RMS68K). To do so,

locate the string "!VCT" at offset 1180 in the memory dump below. This is the

start of the Vector Control Table, each entry of which is as follows:

1 byte for vector #

3 bytes for address

For example, the following data is found at 1184:

0000 145E The first byte (00) indicates vector 0. The next 3 bytes

(00145E) hold the address that will be placed in vector 0.

The vector of interest in this example is vector #4. At address 1190 resides

the information "0400 194E". This must be changed to "0400 0001". By putting

a 1 in the address field, the system initializer is instructed to skip this

vector, which effectively leaves it pointing to the MVME120 Debug Monitor.

=SYSANAL
SYSANAL VERSION 021585 4

SYSA: >MD 1100 100
001100 001100 6100 01F4 6100 3E2A 6000 04BA 4EB9 0000 a. . .a.>*' . . .N. .

.

001110 001110 1FB6 4455 4D59 2278 0D2C 007C 0700 2469 . .DUMY"x. ,$i

001120 001120 0004 B5FC 0000 0000 6606 6100 0E8A 604A f.a...'J

001130 001130 2352 0004 027C F8FF 4292 42AA 0004 257C #R B.B...%.

001140 001140 7FFF FFFF 0008 42AA OOOC 47FA FFCA 254B B...G...%K

001150 001150 0010 426A 0014 257C FFFF FFFE 0016 357C ..Bj..% 5.

001160 001160 F8FF OOIC 007C 0700 2669 0008 0C93 0000 &i

001170 001170 0000 6704 47D3 60F4 268A 027C F8FF 4E73 ..g.G.'.& Ns

001180 001180 2156 4354 0000 145E 0200 194A 0300 194C !VCT. . .^. . .J. . .L

001190 001190 10400 194E] 0500 1950 0900 1960 OAOO 1958 . . .N. . .P. .

.

' . . .X

OOllAO OOllAO OCOO 0000 OEOO 1FB6 OFOO 1FB6 1000 0000

OOllBO OOllBO 1800 2418 1900 123C lAOO 123C IBOO 123C ..$....<...<...<

OOllCO OOllCO ICOO 123C IDOO 123C lEOO 123C IFOO 0001 ...<...<...<....

OOllDO OOllDO 2000 2516 2100 25B4 2200 18DE 3000 0000 .%.!.%.".. .0. .

.

OOllEO OOllEO 5000 0000 5100 0000 5200 0000 5300 0000 P. . .Q. . .R. . .S. .

.

OOllFO OOllFO 100 0053 6000 145E 6100 145E 6200 145E . . .S' . .^a. .''b. .^

^°2 MICROSYSTEMS

(^ MOTOROLA DEBUGGING THE DRIVER

NOTE

This procedure is effective only for debugging
operating system tasks and renders normal
SYMbug breakpoints ineffective. (Refer to the
SYMbug/A and DEbug Monitors Reference Manual.)

After patching to allow MVME120 Debug Monitor breakpoints, determine where to

set the first breakpoint. Using the listing obtained from the SYSGEN, locate
the start of the driver under consideration. The first three longwords will

be offsets to the various entry points. Add the start of the driver address
to each of the offsets and set breakpoints at each address. The simple way of

doing this is to display the memory at the start of the driver using the

Memory Display (MD) command. This procedure is illustrated as follows:

MVME120 x.y > MD 7700 20
007700 00 00 09 CE 00 00 00 FA
007710 02 00 00 00 00 00 00 00

00 00 00 28 00 00 00 00 ..N...z...(.
00 00 00 00 00 00 00 00

MVME120 x.y > BR 7700+9CE 7700+FA 7700+28

Breakpoints
0080CE 0080CE
0077FA 0077FA
007728 007728

MVME120 x.y >

Set the program counter; the startup address is also in the MD listing.

MVME120 x.y > .PC

MVME120 x.y > G

The system will begin executing, and will continue until one of the
breakpoints is encountered. (Normally, the first breakpoint would be the INIT
entry point in the device driver.) At this point, control of the processor
resides with the user; it is available for tracing, setting other breakpoints,
displaying the code, or simply continuing until the next breakpoint.

B
8.3 I/O EVENT STRUCTURE

When a driver completes an I/O operation for a channel, the driver must notify
the task that is attached to the channel by queuing an I/O completion event to

the task in question. Under normal conditions the task attached to the

channel is IDS, the I/O Services module.

Sometimes an I/O completion event is queued that is not properly formatted,
and this can result in errors. When debugging driver code, it is important to

ensure that all I/O events returned by the driver are formatted correctly.

103 MICROSYSTEMS

(g) MOTOROLA
DEBUGGING THE DRIVER

Q

I/O completion event queuing is made necessary by the following circumstances.

Input and output transactions are performed asynchronously under interrupt

control, so execution of the task that originally makes a request to initiate

an I/O transaction is not inherently synchronized with completion of the I/O

transaction. When the driver receives a request to initiate an I/O

transaction, the driver sets up variables indicating that an I/O transaction

should be performed under interrupt control. Then, without waiting for any

I/O operation to be completed, the driver returns control to the routine

(normally the CMR handler) that called the driver. The CMR handler then

returns control to the task (normally lOS) that invoked the CMR handler to

initiate the I/O transaction. As driver interrupts occur, the CMR handler

answers the interrupts and invokes the driver's interrupt service routine to

handle the interrupts. Eventually, the driver completes the requested I/O

transaction under interrupt control; it then queues an I/O completion event to

tell the attached task (usually lOS) that the I/O transaction has been

completed.

In practice, the driver actually interacts with the CMR handler and lOS as

described above, but nothing in the driver restricts it to interactions with

those particular routines. Everything is done on a general basis, so the

driver can be used as it is written in new and unanticipated environments.

At times, an I/O driver must queue an unsolicited event to the task that is

attached to its channel. An unsolicited event is an event that occurs

spontaneously, rather than as a result of a task's request for an I/O

transaction. For example, an I/O driver might queue an unsolicited event to

tell the task attached that an I/O device has been taken offline. Similarly,

an I/O driver might queue an unsolicited event to tell the attached task that

an I/O device has been put back online. These are unsolicited events,

occurring independently rather than in response to actions of the task

attached to the channel

.

An event is defined by system software as a sequence of bytes to be

transferred to a task. The bytes in an event contain information meaningful

to the task that receives the event. An I/O event is only one of many

different kinds of events. The structure of an I/O event can be diagrammed as

fol 1 ows

.

^°^ MICROSYSTEMS

® MOTOROLA DEBUGGING THE DRIVER

$00

$01

$02

$02

$03

$04

$08

$0A

$0C

$0D

EVNTLEN
I

<-- (Length of the event in terms of bytes)
1

EVNTCODE
I

<-- (Code = $01 or $81 for an I/O event)

EVNTSVAD (Logical event service address; present if code = $81)

I

<-- (Type: completion = $70; unsolicited = $80)

(Used by attached task to identify channel)

EVNTTYPE

EVNTKEY

I
EVNTDCB (Physical DCB address) or EVNTCID (Channel ID mnemonic)

|

+ + +
I

EVNTSTAT (Status value)
|

+
I

EVNTDST (Device status) : <-- (Present if EVNTTYPE = $80)
--- + :

EVNTDNUM : <-- (Device number; this field and the reserved
: field below it are present only if

Reserved : EVNTTYPE = $80 and EVNTSTAT = $01)

Note 1. The EVNTSVAD field is optional. It is present in an I/O event only
if EVNTCODE = $81. If the EVNTSVAD field is present, it specifies
the logical address of the routine that should be invoked to respond
to the event. Events are normally handled by a task's ASR, but a

task can specify a special routine to be invoked in response to an

I/O event from a particular channel. If the EVNTSVAD field is

present, the offset values given for the fields following the
EVNTSVAD field must be biased by an increase of 4.

Note 2: If the EVNTSVAD field is present in an event, RMS68K processes the
EVNTSVAD field and removes it from the event before the event is

given to the destination task. Therefore, the receiving task is not
concerned with the EVNTSVAD field. Only the sending task and the
RMS68K Executive must deal with the optional EVNTSVAD field.

Note 3: The EVNTDCB field is normally used to specify the physical DCB
address for the device that is associated with the I/O event. If no

DCB address is available, the EVNTDCB field is replaced with an

EVNTCID field, which contains the channel ID mnemonic of the channel
that is associated with the event. This situation arises when an

unsolicited device event occurs before a DCB address has been
specified. In this case, EVNTTYPE = $80 indicates an unsolicited
device event, and EVNTSTAT = $01 indicates the DCB address is not
available for the unsolicited device event.

Note 4: The EVNTDST (device status) field is present only for unsolicited
events, so the EVNTDST field is present in an event only if EVNTTYPE
= $80.

105 MICROSYSTEMS

(g) MOTOROLA
DEBUGGING THE DRIVER

Note 5: The EVNTDNUM (device number) field and the reserved field below it are

present only if EVNTTYPE = $80 and EVNTSTAT = $01. This combination

indicates an unsolicited device event with no DCB address given.

Because a channel ID mnemonic is supplied in place of a DCB address,

the EVNTDNUM field is included to tell the attached task which drive

is associated with the event. When the DCB address is available, it

can be used to determine which drive is involved.

The individual fields of an I/O event are defined by the equates that follow,

and the fields are described in detail as they are defined.

OFFSET

LOOlO EQU

EVNTLEN DS.B

EVNTCODE DS.B
EVNTIO EQU
EVNTIOSA EQU

This OFFSET block defines the structure of an I/O

event. One variation of the event structure

indicates an I/O completion event; another

variation indicates an unsolicited device event.

* This label marks the first byte of an event

block. It serves as a base address for computing

the lengths of certain kinds of events.

1 This field specifies the length of the event. The

length is specified in terms of the number of

bytes in the event.

1 This field contains the event code, which

$01 specifies the classification of the event. The

EVNTI0+$80 event code for an I/O event can be $01 or $81.

The $81 event code indicates the I/O event

includes a logical event service address (refer

to next paragraph), and the $01 event code

indicates the I/O event does not include a

logical event service address.

D
EVNTSVAD DS.L 1 This field is present in an I/O event only when

EVNTCODE = $81. If the EVNTSVAD field is present

it contains the 4-byte logical address of the

routine to be invoked in response to the I/O

event. The logical address is an address in the

task (normally lOS) that is attached to the

channel

.

Events are normally handled by a task's ASR.

However, when a task attaches itself to a

channel, the task can designate a special routine

to be invoked in response to an I/O event from

that particular channel.

106 MICROSYSTEMS

® MOTOROLA DEBUGGING THE DRIVER

EVNTSVSZ EQU -EVNTSVAD

OFFSET EVNTSVAD

EVNTTYPE DS.B

EVNTCOMP EQU $70

If the attaching task designates a special event-

handling routine at attach time, the CMR handler

puts the logical address of that event-handling
routine into the CCBSVVC field of the channel's
CCB. If no routine is specified, the CMR handler
clears the CCBSVVC field. The device driver uses

the CCBSVVC field of the CCB to determine the

value (if any) for the EVNTSVAD field of an I/O

event.

If the optional EVNTSVAD field is present in an

event, the values of the labels for all the

following event fields must be biased by an

increase of EVNTSVSZ to account for the presence

of this optional 4-byte field.

Resets the location counter to define the

remaining event fields as if the optional

EVNTSVAD field were not present.

This field specifies the type of I/O event that

is being queued. The following values are

defined for this field.

EVNTTYPE = $70 indicates an I/O completion event.

An I/O completion event is normally queued to

signify the completion of a requested I/O

transaction.

EVNTHALT EQU $71

EVNTUNSD EQU $80

EVNTUNSC EQU $FF

EVNTKEY DS.B 1

EVNTDCB DS.L

EVNTTYPE = $71 indicates a HALT/ABORT event.

EVNTTYPE = $80 indicates an unsolicited device

event.

EVNTTYPE = $FF indicates an unsolicited channel

event.

The value of the event key field comes from the

CCBKEY field of the CCB, which was defined

earlier. This key value is specified at ATTACH

time by the task that attaches itself to the

channel, and the key can be used (or ignored) by

that task as it chooses. The attached task might

profitably use the event key as a shorthand

channel identifier to determine which one of

several attached channels is the source of an

event.

This field normally contains the physical address

of the DCB for the device that is associated with

the I/O event. Therefore, this field tells the

attached task which device is associated with the

I/O event.

107 MICROSYSTEMS

(^ MOTOROLA
DEBUGGING THE DRIVER

EVNTCID EQU EVNTDCB

EVNTSTAT DS.W 1

EVNTCMSZ EQU -LOOlO

EVNTDST DS.W 1

EVNtUNSZ EQU LOOlO

EVNTDNUM DS.B 1

DS.B 1

In some cases an unsolicited I/O device event can

occur before any task has initiated any I/O

transactions with the I/O device in question. In

such cases no DCB address is available, so a

channel ID mnemonic is supplied in place of the

EVNTDCB field that is normally part of an I/O

event.

The task receiving the event recognizes that a

channel ID mnemonic replaces the DCB address

because EVNTTYPE = $80 indicates an unsolicited

device event and EVNTSTAT = $01 indicates that

the DCB address is not available for the

unsolicited device event.

When the DCB address is not available, an extra

field is provided {refer to EVNTDNUM description)

in the event to tell the receiving task which

device on the channel is associated with the

event.

For an I/O completion event, the event status

field contains the same value that the I/O driver

returns in the lOSSTA field of the lOCB. For an

unsolicited device event (which is identified by

EVNTTYPE = $80), the EVNTSTAT field is used

differently. In this case, EVNTSTAT = $00 if the

DCB address is supplied, and EVNTSTAT = $01 if

the DCB address is not supplied.

This label defines the size
normal I/O completion event.

(in bytes) of a

The device status field is not part of an I/O

completion event, but is included in an

unsolicited I/O device event. The value that

appears in the device status field is analogous

to the value that is returned in the lOSDST field

of a configure/status parameter block. Because

the device status value occupies only one byte,

the most significant byte of this field is always

zero.

This label defines the size (in bytes) of an

ordinary unsolicited I/O device event.

The EVNTDNUM (device #) field and the reserved

field below it are present only if EVNTTYPE = $80

and EVNTSTAT - $01. This combination indicates

that an unsolicited device event has occurred

with no DCB address available. Because a channel

ID mnemonic is supplied in place of a DCB

address, the EVNTDNUM field is included to inform

108 MICROSYSTEMS

(g) MOTOROLA DEBUGGING THE DRIVER

EVNTDNSZ EQU

EVNTMXSZ EQU

-LOOlO

*-L0010
+EVNTSVSZ

the attached task which drive is associated with

the event.

This label defines the size (in bytes) of an

unsolicited I/O device event which includes the

EVNTDNUM field.

This label defines the maximum possible size (in

bytes) of aa event that has all fields, including

the optional EVNTSVAD field.

B

109 MICROSYSTEMS

(g) M€yrOROLA DEBUGGING THE DRIVER

THIS PAGE INTENTIONALLY LEFT BLANK.

D

^^° MICROSYSTEMS

® MOTOftOLA APPENDIX A

APPENDIX A

THE CHANNEL MANAGEMENT REQUEST (CMR) HANDLER

A.l INTRODUCTION

This appendix describes the functions available through the CMR handler and

the error codes produced. Information for invoking the CMR handler is also

included.

A. 2 CMR HANDLER

User task interactions with channels are performed through requests made to

the CMR handler. The available CMR functions are listed in paragraph 2.3.1.

Normally, a channel would be allocated when the system is initialized. When a

user task wished to perform an I/O function on a particular device, it would

attach to the appropriate channel. The user task would then be able to

initiate I/O. When the I/O function is complete, the user task could detach

from the channel or remain attached to the channel for future I/O requests.

A. 2.1 Invoking the CMR Handler

A user task makes requests to the CMR handler through an RMS68K directive. A

user task issues this directive to RMS68K by executing a TRAP #1 instruction

(see Figure 2-3). Register DO must contain the directive number of value 60,

and register AO must contain a pointer to a parameter block. The parameter
block format varies according to the exact request. The format for each

particular request can be found in the following paragraph.

An example of a user task making a CMR handler request is shown here:

UTSK:

MOVE.L 60, DO LOAD DIRECTIVE NUMBER
LEA PRMBLK.AO LOAD PARAMETER BLOCK POINTER
TRAP 1 ISSUE DIRECTIVE

PRMBLK: DEFINE THE PARAMETER BLOCK

RMS68K will invoke the CMR handler when a directive number 60 is issued. The
CMR handler then interprets the contents of the parameter block to determine
the actions to be taken. When the CMR handler receives a request to initiate
I/O, it will invoke one of the I/O handlers. The particular I/O handler
invoked depends upon the service address supplied when the channel was
allocated. There is one I/O handler for each channel.

Ill MICROSYSTEMS

(g) MOTO«OI.>»
''™'' '

B A. 2. 2 Return from the CMR Handler

When a user task issues a request to the CMR handler, the task is placed in

the READY state list. When that task regains control , the CMR handler will

have acted upon the request. The low order byte of register DO will contain

zero if the request was successfully completed, or it will contain an error

code if the request was not successfully completed. The Z bit of the status

register will reflect the contents of register DO: Z = 1 if register DO = 0;

otherwise Z = 0. The value of the Z bit can be tested by using the MC68000 Bcc

instruction (BEQ, BNE).

It is important to realize that if an INITIATE request is made to the CMR

handler, the error code returned by the CMR handler indicates merely the

successful or unsuccessful invocation of the I/O handler. It does not reflect

the successful or unsuccessful completion of the actual I/O function performed

by the I/O handler.

Refer to the paragraph entitled "Error Codes" in this chapter for a complete

description of error codes.

A. 2. 3 ALLOCATE - Allocate a Channel

Parameter Block Format:

Field #

Code = $01

Not used
Options
Channel Mnemonic
Channel Type
Reserved (used by CHPI)

I/O Handler Service Address
Supervisor Channel Mnemonic (used only if option bit 3

set)
Base Address of Memory Mapped I/O Space
Length of Memory Mapped I/O Space
Hardware Vector Number
Hardware Priority Level

Software Priority Level

Number of Polling Table Entries
gth Polling Table Follows -

Polling Byte Offset
Polling Mask
Polling Test Value
Reset Byte Offspt
Reset Value
Reserved

1 1 byte
2 1 byte
3 2 bytes
4 4 bytes
5 1 byte
6 1 byte
7 4 bytes
8 4 bytes

9 4 bytes
10 2 bytes
11 1 byte
12 1 byte
13 1 byte
14 1 byte

- Variable L

15 2 bytes
16 1 byte
17 1 byte
18 2 bytes
19 1 byte
20 1 byte

^^^ MICROSYSTEMS

(g) MOTOROLA APPENDIX A

Parameter Block Field Descriptions:

Options -

Bit = Attach requests from any task are honored.
= 1 Attach requests from system tasks only are honored.

Bit 1 Reserved.
Bit 2 Exclusive vectoring.
Bit 3 Channel is subordinate to Supervisor Channel Mnemonic field.

Bit 4 Channel is to be a supervisor.

Channel Mnemonic -

Uniquely identifies the channel. It must be nonzero and it must be distinct

from the mnemonic for any other channel or volume name in the system.

Channel Type -

Code which indicates the physical type of the channel. Interpretation of

this code will cause CMR software to handle the INITIATE I/O command in one

of four ways. Channels with code $01 through $0F will pass the request to

the I/O handler with no parameter block checking. Channels with code $10

through $8F will do parameter block checks. Channels with code $FF will not

do parameter block checks; they are used only to notify a task that an

interrupt occurred.

I/O Handler Service Address -

This field points to an I/O handler. The structure of the I/O handler must

have a service vector table that defines:

- The interrupt service entry point.
- The INITIATE I/O command service entry point.
- The initialization entry point.
- A longword for future use.

These are all 4-byte fields of absolute addresses. This field is not

required for channel type $FF, which assumes the interrupt is cleared when

the CMR handler polls the device and finds it activated.

Base Address of Memory Mapped I/O Space -

Physical address of the lowest byte in memory of the memory mapped I/O space

for this channel

.

Length of Memory Mapped I/O Space -

Zero relative consecutive byte count of the memory mapped I/O space for this

channel. All future references to the memory mapped I/O space for this

channel made through the CMR handler must be within the boundaries defined

by the base address for memory mapped I/O and this field.

^^^ MICROSYSTEMS

(g) MOTOfiOLA APPENDIX A

D Hardware Vector Number

Indicates the associated hardware vector. It must be an auto vector (values
25-31) or a user vector (64-255).

Hardware Priority Level -

Indicates the hardware interrupt level associated with the channel. It must
be a value in the range of 1-7, inclusive.

Software Priority Number -

Indicates the position of the Channel Control Block (CCB) within the polling
chain. A higher value of the software priority level will result in faster
service to the channel when it interrupts.

Number of Polling Table Entries -

Indicates the number of 8-byte polling table entries which follow. This
number can be in the range of 1-4, inclusive. For each type of interrupt
associated with a channel, one 8-byte table entry is required to describe
the details of that interrupt. When an interrupt occurs, the following
algorithm is used to determine if this particular channel caused an
interrupt.

The polling byte defined by the polling byte offset is read. If the polling
test value is zero, the polling byte is complemented; otherwise, it is left
unchanged. The resulting polling byte is then ANDed with the polling mask.
If this result is nonzero, it is assumed that this channel caused the
interrupt.

These entries are used only for interrupt-only and nonstandard channels.

Polling Byte Offset -

The zero-relative offset from the base of memory mapped I/O space for this
channel where the polling byte resides. Refer to the polling algorithm
described in "Number of Polling Table Entries".

Polling Mask -

Used in the polling algorithm to determine if this channel caused an
interrupt. Refer to the polling algorithm described in "Number of Polling
Table Entries".

Polling Test Value -

Used in the polling algorithm to determine the polling byte value. Refer to
the polling algorithm described in "Number of Polling Table Entries".

^^^ MICROSYSTEMS

(g) MOTOROLA APPENDIX A

Reset Byte Offset -

The zero-relative offset from the base of memory mapped I/O space for this
channel where the reset byte resides.

Reset Value -

Used by the interrupt service to clear random or unexpected interrupts on a

channel. It is critical that the reset byte offset and reset value be

defined correctly to prevent infinite loops in the polling routine caused by

interrupts that cannot be cleared.

Request Function Description:

A CCB is allocated and initialized for the channel with the specified
mnemonic. The CCB is linked into the interrupt polling chain according to the
specified software priority number.

Channels must be allocated by system tasks. After a channel has been
allocated, other tasks may attach to that channel and initiate I/O.

After a channel is established, the CMR handler will turn control over to the
service routine at its initialization entry point with a JSR instruction.
This allows a driver, for example, to initialize a device to a known state
before the operating system is running.

A. 2. 4 ATTACH - Attach a Channel

Parameter Block Format:

Field #

1 1 byte Code = $03
2 1 byte Not used
3 2 bytes Options
4 4 bytes Channel Mnemonic
5 1 byte User Generated ID

6 1 byte Length of ASQ Return Entry
7 4 bytes ASQ Service Vector
8 2 bytes Reserved
9 2 bytes Reserved

Parameter Block Field Descriptions:

Options -

Bit = Issue a WAKEUP directive for requesting task when I/O is

complete.

= 1 Return I/O completion event in requesting task's ASQ .

Return events for I/O completions on standard channels must be returned
through the ASQ.

^^^ MICROSYSTEMS

(g) MOTOROLA
'APPENDIX A

D Channel Mnemonic -

A unique, nonzero identifier assigned to the channel when it was allocated.

User Generated ID -

The field can contain any value. This value is returned as part of the

return packet upon I/O completion. It can be used by the requesting task to

identify I/O completions when concurrent multiple I/O requests are being

processed.

Length of ASQ Return Entry -

Applicable only when flag bit 0=1. This field specifies the maximum byte

length of the event. If the value in this field is "n", the entire event,

the first "n" bytes, or the first 32 bytes will be returned, whichever is

shorter.

ASQ Service Vector -

Applicable only when flag bit 0=1. If this field is zero, the default ASQ

service vector associated with the requesting task will be used for

processing the I/O completion event. Otherwise, this field will specify the

alternate ASR service vector which is to be used for processing the I/O

completion event.

Request Function Description:

The channel is logically connected to the requesting task, which is then

considered the channel driver. The channel is dedicated to the channel driver

until the driver issues a DETACH request for the channel. This ATTACH request

must be made before any INITIATE I/O requests are made.

NOTE

When using ATTACH under a VERSAdos operating
system environment, users cannot ATTACH to a

device already SYSGENed into VERSAdos. If

VERSAdos is unaware of a device, it can be

allocated and attached.

A. 2. 5 DELETE - Delete a Channel

Parameter Block Format:

Field #

I

2

3

4

1 byte
1 byte
2 bytes
4 bytes

Code = $024
Not Used
Not Used
Channel Mnemonic

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX A

Parameter Block Field Descriptions:

Channel Mnemonic -

A unique, nonzero identifier which is assigned to the channel when it is

allocated. The channel must currently be attached to the requesting task.

Request Function Description:

The specified channel is detached from the requesting task, and the CCB of

the specified channel is removed from the system.

A. 2. 6 DETACH - Detach a Channel

Parameter Block Format:

Field #

1 1 byte Code = $04
2 1 byte Not Used
3 2 bytes Options
4 4 bytes Channel Mnemonic

Parameter Block Field Descriptions:

Flag -

Bit 0=0 Detach only the specified channel.

= 1 Detach all channels which are attached to the requesting
task. A valid channel mnemonic must still be supplied.

Channel Mnemonic -

A unique, nonzero identifier of a channel which was assigned to the channel
when it was allocated. This channel must be currently attached to the

requesting task.

Request Function Description:

The logical connection between the specified channel and the requesting task

is removed.

^^^ MICROSYSTEMS

B

(g) MOTOf^OLA APPENDIX A

A. 2. 7 PUT ON LINE - Put a Channel Online

Parameter Block Format:

Field »

1 1 byte Code = $05
2 1 byte Not Used
3 2 bytes Not Used
4 4 bytes Channel Mnemonic

Parameter Block Field Descriptions:

Channel Mnemonic -

The unique, nonzero identifier of the channel which is being put online.
This mnemonic was assigned when the channel was allocated.

Request Function Description:

The specified channel is removed from offline status, allowing ATTACH requests
for that channel to be honored.

A. 2. 8 TAKE OFFLINE - Take a Channel Offline

Parameter Block Format:

Field #

1 1 byte Code = $06
2 1 byte Not Used
3 2 bytes Not Used
4 4 bytes Channel Mnemonic

Parameter Block Field Descriptions:

Channel Mnemonic -

A unique, nonzero identifier of the channel being taken offline. The
channel must currently be attached to the requesting task. The channel
mnemonic was assigned when the channel was allocated.

Request Function Description:

The specified channel is given an offline status which prevents any ATTACH
requests from being performed on this channel. The channel is detached from
the requesting task. The channel's definition remains in the system. The
channel remains in offline status until a PUT ON LINE request is made.

^^^ MICROSYSTEMS

® MOTOflOLA APPENDIX A

1

2

3

4

5

6

1 byte
1 byte
2 bytes
4 bytes
4 bytes
4 bytes

7

8
9

oLanaar

4 bytes
4 bytes
2 bytes

A. 2. 9 INITIATE - Initiate I/O on a Channel

Parameter Block Format:

The first six fields are identical for initiating I/O on both standard and
nonstandard channels. After the first six fields, the parameter block fields
may differ.

- Standard and Nonstandard Channel Common Fields -

Field #

Code = $07
Subcode =

Not Used
Channel Mnemonic
Taskname of Task Containing Buffer Space
Session Number of Task Containing Buffer Space

Standard Channel Unique Fields and Shared-Access

User-Supplied (DCB Address for Standard Channels)
Logical Base Address of Command Packet (lOCB)
Packet Length

Parameter Block Field Descriptions:

Channel Mnemonic -

The unique, nonzero identifier of the channel on which I/O is being
initiated. This mnemonic was assigned when the channel was allocated.

Taskname of Task Containing Buffer Space -

Name of the task in which the buffer space resides. If this field is zero,
the session number of the requesting task is assumed. If the requesting
task is not a system task, this session number must equal the session number
of the requesting task.

User-Supplied ID -

This ID is passed back as part of the completion event.

Logical Address of Command Space -

This command space contains the command packet which the I/O handler will
use. The command packet must reside within the address space of the
requesting task.

Packet Length -

Length of the packet supplied.

^^^ MICROSYSTEMS

D

®_ ^ . APPENDIX AMOTOROLA

Request Function Description:

The appropriate I/O handler is invoked. For standard and shared-access

channels, the taskname information and parameter block structure are checked.

For nonstandard channels, no checking is done. For shared-access channels,

return events are always through the ASQ.

A. 2. 10 HALT - Halt I/O

Parameter Block Format:

Field #

1 I byte Code = $07

2 1 byte Subcode = $02

3 2 bytes Not Used
4 4 bytes Channel Mnemonic

Parameter Block Field Descriptions:

Channel Mnemonic -

The unique, nonzero identifier of the channel on which I/O is being halted.

The mnemonic was assigned when the channel was allocated.

Request Function Description:

This request is applicable for nonstandard channels only. This request is

passed directly to the I/O handler.

A. 2. 11 RESET - Reset Interrupt

Parameter Block Format:

Field #

1 1 byte Code = $07

2 I byte Subcode = $07

3 2 bytes Not Used

4 4 bytes Channel Mnemonic

Parameter Block Field Descriptions:

120 MICROSYSTEMS

(g) MOTOROLA APPENDIX A

Channel Mnemonic -

The unique, nonzero identifier of the channel for which a reset of hardware
interrupts is desired. The mnemonic was assigned when the channel was
allocated.

Request Function Description:

Applicable to standard and shared-access channels only. This request is

passed directly to the I/O handler.

A. 2. 12 Error Codes

Error codes are returned to a driver task from the CMR handler. Error codes
are classified into three types, as follows:

Type Classification

00 General system-detected error. These errors are common to those
produced by all RMS68K directives. The CMR handler is capable of
returning a subset of the entire set of general system-detected
error codes.

10 Errors not caused by parameter block error.

11 Parameter block errors.

When a task resumes execution after making a CMR request, one of the above
types of errors is reflected in bits 7-6 of register DO. The specific error
can then be determined by examining the entire low order byte of register DO.

The I/O handlers return an error code within the event message returned in the
ASQ or the return status buffer.

Type 00 errors are summarized in Table A-1.

Type 10 errors are subdivided into four categories. Table A-2 summarizes all

of the type 10 errors, showing the four categories.

Type 11 errors indicate which field of the parameter block was in error. The
field number would reside in bits 5-0 of the error code byte. The fields of a

parameter block are numbered sequentially starting at 1, and do not correspond
to the relative byte offset of a field. The fields of the parameter block for

each CMR routine are listed and described in paragraph A. 2. 3.

D

^^^ MICROSYSTEMS

B

®_ _ _. ^ APPENDIX AMOTOROLA

TABLE A-1. Summary of Type 00 Errors

ERROR
CODE ERROR DESCRIPTION

2 Parameter block address not in requesting task's address space.

3 Target task does not exist.

6 Requested function has already been performed for the channel,

and duplicate request not allowed.

8 Memory space not available.

9 Requested function can only be requested by a system task.

B Request conflicts with existing CCB.

TABLE A- 2. Summary of Type 10 Errors

ERROR
CODE ERROR DESCRIPTION

$81 Channel not attached to caller.

$82 Channel attached to another task.

$83 Channel offline.

$84 Channel busy.

$85 Invalid call for this channel type.

$C1 Bad function code.

$C6 Bad ASQ length (attach).

$C7 Service vector error (attach).

$C9 Bad channel base address (allocate).

$CB Bad vector number (allocate).

$CC Bad polling (hardware) priority (allocate).

$CE Bad polling TBL count (allocate).

$CF Bad polling offset (allocate).

or
Bad reset byte offset (allocate).

NOTE: $8x codes can be generated by channel management requests or by

I/O requests to standard or nonstandard type channels.

^22 MICROSYSTEMS

® MOTOROLA APPENDIX A

A. 2. 13 I/O Completion Event for Standard Channels

Offset Length Field B
1

2

3

4

8

10

Event Type

$70 = Normal
$71 = Halt
$80 = Unsolicited channel event
$FF = Unsolicited channel event

Length
Code (1)
Event type
CCB key
ID (DCB address)
Status value (device dependent)
Unsolicited status/configuration information

Status Value

$70 = Variable
$71 = (/O) - Command halted

- Nothing to halt

$80 = - Device status (DCB address
given)

1 - Device status (Channel ID

given)
$FF = - Channel reset

$FF - Channel down

123 MICROSYSTEMS

(g) AfOTO«OI.>l 'APPENDIX A

B

THIS PAGE INTENTIONALLY LEFT BLANK.

^^^ MICROSYSTEMS

(M) MOTOROLA APPENDIX B

APPENDIX B

DRIVER CALLS TO RMS68K (TRAP #0)

B.l INTRODUCTION

This appendix describes several routines within RMS68K which may be called by

any module executing in supervisor mode. Accordingly, they are intended

primarily for use by user-written Executive procedures, such as input/output

device drivers. They are not intended for use by modules executing in user

mode.

B.2 SUMMARY DESCRIPTIONS OF THE ROUTINES

The routines described in this appendix provide operating services in four

categories: task-related services, memory management services, semaphore

services, and utility services. With a single exception, all of the services

are available at only one level within an operating environment subdivided

functionally into three levels.

At the highest level, tasks (which may be user or system tasks) are

applications programs which execute only in the user mode of the MC68000.

Tasks request services from the operating system through TRAP #n calls, where

#n may be #1 through #15. Appendix C lists the services provided by each

TRAP.

A TRAP is also called a programmed interrupt. TRAP #1 interrupts are preceded

by loading register DO with the service request code of the required service.

This code is used to compute a jump through a vector table. In the cases of

TRAPS #2 through #4, the programmed interrupt is handled by an interrupt

processor routine called a "server". There is only one server associated with

each TRAP. The user mode program provides a parameter block address. By

accessing this block, the server determines the nature of the requested

service. Even though the server is a component of the operating system, it is

classified as a task. Therefore, it executes in user mode. The server

coordinates multiple requests of the same class from various user and system

tasks at a logical level of management. According to its priority scheme, it

requests various operating system services on a one-at-a-time basis.

All tasks in VERSAdos, including the servers associated with TRAPs #2, #3, and

#4, may execute TRAP #1 interrupts. There is no architectural requirement to

proceed toward the kernel in strict TRAP number sequence. By issuing TRAP #1

interrupts, the servers most commonly access I/O driver modules, which are one

example of a class of modules called Executive procedures.

Executive procedures execute only in supervisor mode as part of the RMS68K

Executive or kernel. Accordingly, they may issue TRAP #0 interrupts.

Executive procedures share hardware/software resources with user tasks on a

managed basis. Examples of these resources include memory space, execution

time, specialized conversion functions, and I/O to and from shareable and

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX B

II

nonshareable devices. The Executive procedures written by users are most
commonly I/O drivers.

If the driver is structured to permit a user task's own-code exit subroutine
to be named -- for example, in association with specialized data conversion
after a read operation -- the own-code subroutine is classed as a "dynamic
extension" of the driver. Accordingly, it also executes in supervisor mode,
even though it is provided as part of a user task. Because the user task's
own-code subroutine executes in supervisor mode, it too may issue TRAP #0
interrupts if appropriate, even though it resides at the highest level of the
system complex. The own-code exit subroutine is described in the RADl Device
Driver Software User's Manual.

Many of the TRAP #0 routines described below provide adjunctive services
associated with I/O resources and are "notification method" specific. When a

user task requests an I/O operation, it elects to be notified of the
completion of that operation by one of two methods -- queue-event or wakeup.

B.2.1 Mnemonic Abbreviations

In the descriptions of the routines in this appendix, the following mnemonics
are used:

ASR Asynchronous Service Request
ASQ Asynchronous Service Queue
GST Global Segment Table
MMIO Memory Mapped Input/Output
MMU Memory Management Unit
PAT Periodic Activation Table
TCB Task Control Block
TST Task Segment Table
UST User Semaphore Table

Refer to the M68000 Family Real-Time Multitasking Software User's Manual for
descriptions of the tables and control blocks referenced above.

B.2.2 Task-Related Services

Task-related services encompass both periodic activation of an Executive
procedure and post-event notification of user tasks.

EXROPA

An Executive procedure may be scheduled or descheduled for activation on a

periodic basis.

EXOEVENT

An I/O event may be queued to its associated task. The READY function,
described below, is implicitly included.

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX B

PAUSE

While waiting for the completion of an I/O operation, an Executive procedure

may relinquish its allocated time.

READY

An Executive procedure may change the state of a task from DORMANT to READY,

in preparation for reactivation in accordance with the task's elected

notification method. The READY function is implicit in both EXQEVENT and in

WAKEUP.

MAKEUP

A task may be reactivated upon completion of a requested service. The READY

function, described above, is implicitly included.

B.2.3 Memory Management Services

Memory management services encompass the allocation and deallocation of

physical memory, the conversion of logical -to-physical memory address, and

address look-up services for various tables maintained by the operating

system.

FNDGSEG

The address of a shared local or global memory segment may be retrieved from

the GST maintained by the operating system.

FNDTSEG

The address of a user or system task segment may be retrieved from the TST

maintained for each running task.

GETTCB

The address of a Task Control Block may be retrieved from the TCB Table

maintained by the operating system.

LOG PHY

The logical address of a memory segment may be converted to its physical

address.

PAGEALOC

One or more pages of physical memory may be allocated to a task.

PA6EFREE

Page{s) of physical memory may be deallocated.

^^^ MICROSYSTEMS

El

(g) MOTOROLA APPENDIX B

B.2.4 Semaphore Services

Semaphore services encompass both semaphore locater service and exclusive
resource queueing service.

FNDUSEM

A task-associated semaphore may be located on a matching name basis or by

association with the specified task.

PVSEM

A request for exclusive use of a resource may be queued or dequeued.

B.2.5 Utility Services

Utility services encompass the reporting of the current time of day and the

saving of crash dump data.

RDTIMER

The time of day may be read and returned.

KILLER

The cause of system trouble may be saved and the system deliberately crashed.

B.3 SUMMARY DESCRIPTION OF CALL PROCEDURES

The structure of all TRAP #0 calls includes several classes of programmed
operations. Prior to executing the call, register DO is loaded with the

service request code associated with each routine in the documentation
appearing in Part 4 of this appendix. Depending on the routine being called,

various other registers are loaded with data and addresses. The call itself

is then executed in one of three ways. First, if the code section issuing the

call is included in the same load module with the Executive, the fastest

method of executing the call is to issue a Branch-to-Subroutine (BSR)

instruction to the desired entry point name which has been declared external.

The link loader will resolve the reference when the load module is created.

Second, if the code section issuing the call is not to be included in the same

load module with the Executive, the call can be executed by issuing the

command TRAP #0. Third, also if the code section is not to be included in the

same load module as the Executive, users can obtain the address of the routine

using the ENTRY call (refer to paragraph G.6) during initialization, and then

just call the routine as a subroutine. Finally, whichever call procedure is

used, the commands following it are nearly always associated with a successful

and an unsuccessful result, respectively. The command immediately following

the call handles a successful result, except for KILLERTO and KILLER, which

never return. It is shown in the examples as a short branch, because an

unsuccessful result returns at the instruction following the call, plus two

bytes. In one case, LOGPHY, a third return follows in the same manner as the

second, with an offset of four bytes from the instruction following the call.

^^® MICROSYSTEMS

_ . APPENDIX BMOTOROLA

B.3.1 Separately Cataloged Routines

The call structure used by code sections to be cataloged separately from the

Executive load module is typically:

MOVE.L <service-code>,DO
LEA <param-table>,AO
TRAP #0

BRA.S <successful-result> Return 1

<unsuccessful-result> Return 2

The structure of the parameter table and register use differs with each TRAP

#0 routine in question and is fully documented for each in Part 4.

Refer to paragraph G.6 for the ENTRY calling structure.

B.3.2 Integral Supervisor Routines

The call structure used by code sections to be included in the same load

module with the Executive is typically:

LEA <param-table>,AO
BSR <entry-point>
BRA.S <successful-result> Return 1

<unsuccessful-result> Return 2

The structure of the parameter table and register use differs with each TRAP

#0 routine in question and is fully documented for each in Section 4.

B.4 ALPHABETIC LISTING OF CALLING SEQUENCE

The TRAP #0 routines summarized in the preceding paragraphs are described in

detail below. Several of the routines feature multiple entry points adapted

to various needs. In the case of each entry point, alternate procedures are

presented in accordance with the conventions described above.

All entry point names to be accessed by Branch-to-Subroutine instructions

begin with the letters "SB...". Their associated preparation and return

sequences appear after the illustration of the TRAP #0 version.

Following the detailed descriptions begins a condensed alphabetic listing of

all TRAP #0 routines. The condition of all data and address registers is

shown for each entry and alternate return. The appearance of a word preceded

by a pound sign (e.g., # count, # entry) indicates that the register contains

an integer binary value. The symbol "N/A" means "not applicable"; "N/C"

means "no change". The angular brackets "<...>" enclose an item, known as a

syntactic variable, that is replaced in a command line by one of a class of

items it represents. Square brackets "[...]" enclose an item that is

optional

.

^2^ MiCROSYSTEMS

a

(g) MOTOROLA APPENDIX B

B.4.1 EXQEVENT

Upon its occurrence, an event may be queued from the Executive to a task.
Three entry points are provided, selection of which is governed by the manner
in which the target task is identified and by whether or not the Executive
procedure is an interrupt handler.

Upon entry to EXQEVENT, registers D2 through D7 contain event descriptor data
and event data itself. If additional space is needed for event data,
registers Al and A2 are considered continuations from D7. The byte structure
of register D2 is $nnttcccc, where "nn" is the length of the event data in

bytes, "tt" is the message type, and "cccc" are the first two bytes of the
message. For a complete list of message types and their associated codes,
refer to the M68000 Family Real-Time Multitasking Software User's Manual.

EXQEVENT features two sets of entry points, depending on how the task is

identified and whether or not the caller is an interrupt handler. In the case
of a caller that is not an interrupt handler, if the target task is identified
by taskname and session number, the EXQEVENT entry points are EXQEVNTN and
SBQEVNTN:

EXQEVNTN calling sequence:

MOVE.L #11, DO Service request code for EXQEVNTN
LEA TABLE, AO
TRAP #0
BRA.S <queued> Return 1

<not-queued> Return 2

TABLE DC.L <taskname>
DC.L' <session-number>

SBQEVNTN calling sequence:

LEA TABLE, AO
BSR SBQEVNTN
BRA.S <queued> Return 1

<not-queued> Return 2

If the target task is identified by a TCB, the EXQEVENT entry points are
EXQEVNTT and SBQEVNTT:

EXQEVNTT calling sequence:

MOVE.L #23, DO Service request code for EXQEVNTT
LEA <target-TCB>,AO
TRAP #0

BRA.S <queued> Return 1

<not-queued> Return 2

^^° MICROSYSTEMS

® MOTOROLA 'APPENDIX B

SBQEVNTT calling sequence:

LEA <target-TCB>,AO
BSR SBQEVNTT
BRA.S <queued> Return 1

<not-queued> Return 2

If the event is being queued by an interrupt handler executing at an interrupt
level greater than 0, the target task is identified by a TCB and the entry
points are EXQEVNTI and SBQEVNTI:

EXQEVNTI calling sequence:

MOVE.L #24, DO Service request code for EXQEVNTI
LEA <target-TCB>,AO
TRAP #0
BRA.S <queued> Return 1

<not-queued> Return 2

SBQEVNTI calling sequence:

LEA <target-TCB>,AO
BSR SBQEVENTI
BRA.S <queued> Return 1

<not-queued> Return 2

EXQEVENT returns to the instruction following the call if the event was queued
successfully. If the event was not queued successfully, EXQEVENT returns to
the instruction following the call, plus two bytes.

Upon exit from EXQEVENT, the registers remain as configured on entry. In

addition, register A4 contains the ASQ address, and register A5 contains the
target task's TCB address.

B.4.2 EXRQPA

An Executive procedure may be activated one time or periodically, and a

periodically activated procedure may be deactivated. Both the characteristics
of the activated procedure and the structure of the periodic activation
request must be considered.

B.4.2. 1 The Executive Procedure . Periodic activation is controlled by the
system timer in the RMS68K Executive. An interrupt occurs at approximately
lO-millisecond intervals, causing the Executive to scan the PAT or Executive
procedures whose identities have been declared through calls to EXRQPA. Those
procedures whose dormant intervals have expired are activated.

Periodically activated Executive procedures are classed as interrupt handlers.
Accordingly, they must be associated with an interrupt level when their
identities are declared through calls to EXRQPA. The interrupt level range
must be between 1 and 6, inclusive.

131
MICROSYSTEMS

® MOTOROLA APPENDIX B

Q

The requested activation may specify one-time only or continuous activation
modes. A single activation might be requested, for example, to test for time-
out on an I/O device. Periodic activation on a continuous basis might be

requested, for example, to poll an I/O device.

On entry to the activated Executive procedure, register DO contains the number
of intervals represented by this activation. The length of an interval is the
number of milliseconds specified through the call to EXRQPA which declared
this Executive procedure for activation. If the value of register DO is

greater than 1, it means that n-1 activations have been missed due to higher
priority requests. In addition to register DO, register Dl contains the 32-

bit activation identification value specified through the call to EXRQPA which
declared this Executive procedure for activation. The contents of registers
DO and Dl are discussed in detail below. If the Executive procedure uses

registers D2 through D7 or registers A2 through A7, they must be saved on

entry. If a timer interrupt occurs within the Executive procedure, registers
DO, Dl, AO, and Al will be saved and restored by the timer interrupt handler.

Exit from an activated Executive procedure is through an M68000 RT instruction
after restoring any saved registers D2 through D7 and A2 through A7.

B.4.2.2 Activation Request Procedures . On entry to EXRQPA, register DO
contains the service request code. Register Dl expresses the periodic
activation type code and interrupt level, as follows:

Bit No. Value Meaning

15 Request for new periodic activation.
1 Cancel periodic activation request.

14 Request single activation.
1 Request continuous activation.

13 If another activation request is currently
outstanding which has the same activation ID as

this request, cancel it before registering the

new request. Only one such request will be

cancelled.
1 Do not cancel a request with the same ID before

registering the new request. It will be possible
to have more than one request with the same ID in

effect at the same time. This option executes
faster than the option with bit 13=0.

12-8 000000 Unused.
7-3 00000 Unused.
2-0 nnn Interrupt level 1-6.

Register D2 contains a 32-bit value to serve as the request identification.
The contents are not important except that they are unique. Register AO
contains the address of the procedure to be activated. Register Al contains
the activation interval expressed in milliseconds.

For additional information on interrupt levels, refer to the 16/32-Bit
Microprocessor Programmer's Reference Manual.

^^^ MICROSYSTEMS

(g) MOTOROLA
APPENDIX B

There is only one set of entry points to EXRQPA, including EXRQPA and SBRQPA:

EXRQPA calling sequence:

Service request code for EXRQPAMOVE.L #34, DO Service
MOVE.W <options>,Dl
MOVE.L <request-id>,D2
LEA <procedure>,AO
MOVE.L <interval>,Al
TRAP #0

BRA.S <accepted> Return 1

<not-accepted> Return 2

lling sequence:

MOVE.W <options>,Dl
MOVE.L <request-id>,D2
LEA <procedure>,AO
MOVE.L <interval>,Al
BSR SBRQPA
BRA.S <accepted> Return 1

<not-accepted> Return 2

On exit, registers DO and Dl are destroyed. Registers D2 through D7 and AO

through A7 remain as configured on entry.

B.4.3 FNDGSEG

FNDGSEG locates shared local and global segments, both of which are listed in

the GST maintained by the Executive. The caller may locate an existing

segment entry, obtain a pointer to an unused segment entry, or determine that

the GST is full.

On entry to FNDGSEG, register DO contains the service request code. Register

Dl contains the segment attributes, as follows:

Bit No. Value Meaning

31-16 $0000 Unused.
15-14 00 Unused.
13 Segment is not local.

1 Segment is shared locally.

12 Segment is not global.

1 Segment is shared globally.
11-8 $0 Unused.
7-0 $00 Unused.

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX B

Q

The only valid configurations of bits 12 and 13 are 01 and 10. The invalid

configurations 00 and 11 will cause FNDSEG to return as though the named

segment was not found, as described in exit conditions in the next paragraph.

Register D2 contains the task's session number. Register AO contains the

segment name. There is only one set of entry points to FNDGSEG, including

FNDGSEG and SBFNDGSG.

FNDGSEG calling sequence:

MOVE.L
MOVE.L
MOVE.L
MOVE.L
TRAP #0

BRA.S

#9, DO Service request code for FNDGSEG
<segment-attributes>,Dl
<session-number>,D2
<segment-name>,AO

<found>
<not found>

Return 1

Return 2

SBFNDGSG calling sequence:

MOVE.L <segment-attributes>,Dl
MOVE.L <session-number>,D2
MOVE.L <segment-name>,AO
BSR SBFNDGSG
BRA.S <found> Return 1

<not-found> Return 2

On exit, FNDGSEG returns to the instruction following the call if the named

segment was found. If it was not found, or if its segment attributes

specified an illegal combination in bits 12 and 13, the return will occur at

the next instruction following the call, plus two bytes. The configuration of

register AO is different for each of these alternate returns. In both

returns, however, register DO contains the updated count of the total number

of entries in the GST. Registers Dl and D2 remain as configured on entry.

The contents of registers D3, Al, A2, and A3 are destroyed.

A return to the instruction following the call indicates that the named

segment was found in the GST. Register AO points to the entry by entry
number.

A return to the instruction following the call, plus two bytes, indicates that

(1) the named segment was not found (also caused by illegal segment attributes
specification), and (2) either a new entry is provided or the GST is full. A

nonzero value returned in register AO points to the next available table entry

by entry number. A' zero value indicates that the GST is full.

B.4.4 FNDTSEG

FNDTSEG locates a user or system task segment in the TST associated with the

task, and returns both the TST entry pointer and an offset to the segment
description entry within the TST.

On entry, register DO contains the service request code. Register D7 contains

the segment name.

134 MfCROSYSTEMS

(g) MOTOROLA APPENDIX B

There are only two entry points to FNDTSEG, including FNDTSEG and SBFNDSEG.

FNDTSEG calling sequence:

MOVE.L #7, DO Service request code for FNDTSEG
MOVE.L <session-nuniber>,D2
MOVE.L <segnient-name>,D7
LEA <TST-address>,AO
TRAP #0
BRA.S <found> Return 1

<not-found> Return 2

On exit, FNDTSEG will return to the instruction following the call if the
named segment was found. If the named segment was not found, FNDTSEG will
return to the instruction following the call, plus two bytes. In both cases,
register DO is destroyed. Register D5 varies with each return. Registers D7
and AO remain as configured on entry.

If the named segment was found, register D5 contains the offset within the TST
where the named segment was found.

If space remains available in the TST while the named segment was not found,
register D5 contains the offset within the TST of the first empty table entry.
Register D5 will contain the value zero if the TST is full.

B.4.5 FNDUSEM

A task semaphore entry may be located in the UST maintained by the Executive
by either of two locator methods. The semaphore may be located by its name if
it is known. If not, any semaphore owned by the designated task may be
located by a match on the target task's TCB.

On entry, register DO contains the service request code. Register AO controls
the method of search selected. If register AO contains the value zero, the
search will locate any semaphore associated with the specified TCB. If AO is

not equal to zero, it will be matched against the user task semaphore names in

the UST. Register A4 contains the target task's TCB address.

There is only one set of entry points to FNDUSEM, including FNDUSEM and
SBFNDSEM.

FNDUSEM calling sequence:

Service request code for FNDUSEMMOVE.L #12,00 Service
MOVE.L <selection>,AO
LEA <TCB-address>,A4
TRAP #0
BRA.S <found> Return 1

<not-found> Return 2

^^^ MICROSYSTEMS

D

(g) MOTOROLA
'APPENDIX B

SBFNDSEM calling sequence:

MOVE.L <selection>,AO
LEA <TCB-address>,A4
BRS SBFNDSEM
BRA.S <found> Return 1

<not-found> Return 2

On exit, FNDUSEM will return to the first location following the call if a

match has been found in the UST for either the specified semaphore name or the

task's KB. FNDUSEM will return to the first location following the call,

plus two bytes if a match has not been found.

If a match has not been found, FNDUSEM will indicate either the next available

entry in the UST or that the UST is full. Registers DO and D2 vary, depending

on the return selected. Registers 01, 03, and 04 are destroyed. Register AO

varies, depending on the return selected. Register A4 remains as configured

on entry.

If a match has been found on either the user semaphore or the task's TCB

specified with the call, register DO contains the table entry number where a

semaphore or TCB match was found. Register 02 contains the current number of

entries in the UST. Register AO contains the semaphore name.

If a match was not found on either the specified semaphore name or the

specified TCB, according to the request form selected on entry, the

configuration of the registers depends on whether or not an unused entry was

available in the UST. In both cases, register 02 contains the updated or

current number of UST entries, and register AO contains the value zero.

If an unused entry were available, register DO contains the entry number of

the avai Table entry. Register 01 contains the entry number of the primary
reference to a semaphore of the same name, if the caller's reference is a

secondary or successive such reference. Multiple references occur when a

semaphore is shared by more than one task. A multiply referenced semaphore

appears only once, when initially declared. Thereafter, other references

create only pointers to the original reference. If the current reference is

unique, register 01 will contain the value zero.

If no unused entry is available in the UST, both registers 00 and 01 contain

the value zero.

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX B

B.4.6 GEHCB

GETTCB win locate a KB address in the linked list of TCBs maintained by the
Executive, based on the tasknatne and session number of the task.

On entry, register DO contains the service request code,
the address of the target taskname and session number.

Register AO contains

GETTCB provides two sets of entry points, depending on caller type. GETTCB is

the principal security device within the operating system. Because user tasks
are permitted to access resources used by other tasks only if the session
numbers are the same, GETTCB verifies its target task identification procedure
for user tasks as compared to system tasks. If the caller is a user task, the
session number supplied with the target taskname is ignored. The calling
task's session number is supplied automatically. Thus, a call to locate
another user task with a different session number will always fail after a

search of the linked list of TCBs. If the caller is a system task, however,
the session number supplied with the target taskname will be honored. Thus,
the call to locate other system tasks, as well as any user task, will succeed.
One set, consisting of GETTCB and SBGETTCB, is used to retrieve the target TCB
address if the caller is a user task:

GETTCB calling sequence:

MOVE.L
LEA
TRAP
BRA.S

#6, DO
TABLE, AO
#0

<found>
<not-found>

Service request code for GETTCB

Return 1

Return 2

TABLE DC.L <taskname>
DC.L <session-number>

SBGETTCB calling sequence:

LEA TABLE, AO
BSR SBGETTCB
BRA.S <found>
<not-found>

Return 1

Return 2

TABLE DC.L <taskname>
DC.L <session-number>

137 MICROSYSTEMS

m MOTOROLA 'APPENDIX B

Q

The second set of entry points, GTXTCB and SBGTXTCB, is used to retrieve the

target KB address if the caller is a system task.

GTXTCB calling sequence:

MOVE.L #13, DO Service request code for GTXTCB

MOVE.L <taskname>,AO
MOVE.L <session-number>,Dl
TRAP #0

BRA.S <found> Return 1

<not-found> Return 2

SBGTXTCB calling sequence:

MOVE.L <taskname>,AO
MOVE.L <session-number>,Dl
BSR SBGTXTCB
BRA.S <found> Return 1

<not-found> Return 2

On exit, GETTCB will return to the instruction following the call if the

indicated TCB address was found. If it was not found, GETTCB will return to

the instruction following the call, plus two bytes. In both cases, registers

DO, Dl, and D2 are destroyed.

If the specified user task or system task TCB was found, the TCB address is

returned in register AO. Register A5 remains configured as on entry.

B.4.7 KILLER

KILLER saves the cause of system trouble and crashes the operating system.

Refer to the M68000 Family Real-Time Multitasking Software User's Manual for

information on how to analyze a system crash.

KILLER provides a single set of entry points, including KILLERTO and KILLER.

KILLERTO calling sequence:

MOVE.L #32, DO Service request code for KILLERTO

TRAP #0

KILLER calling sequence:

BSR KILLER

There is no return from either KILLERTO or KILLER because the system is no

longer operational

.

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX B

B.4.8 LOGPHY

A logical base address, beginning from either an even or an odd number, may be

converted to Its physical address. In addition, the manner of return from the
service routine indicates the location of the specified memory "window" with
respect to the boundaries of the specified memory segment.

A memory "window" is a stream of bytes beginning at a specified relative or
logical base address and continuing contiguously and incrementally through a

specified number of bytes. The window may reside totally within a specified
segment of memory, it may straddle a segment boundary, or it may be completely
outside of the specified segment.

Upon entry to LOGPHY, register DO contains the service request code. Register
D5 contains the length of the window In bytes. Register D6 contains the

logical beginning address of the window. Register AO contains the calling
task's TST address.

LOGPHY provides two sets of entry points, depending on whether the supplied
logical address is an even or an odd number. The entry points LOGPHY and
SBLOGPHY clear bit zero of the returned physical address to zero, so that
conversion always yields an even result.

LOGPHY calling sequence:

MOVE.L #8, DO Service request code for LOGPHY
MOVE.L <logical-address>,D6
MOVE.L <TST-address>,AO
TRAP #0
BRA.S <good-return> Return 1

BRA.S <part-conta1ned> Return 2

[<not-conta1ned>] [MMIO-segment>] Return 3

SBLOGPHY calling sequence:

MOVE.L <logical-address>,D5
MOVE.L <TST-address>,AO
BSR SBLOGPHY
BRA.S <good-return>
BRA.S <part-contained>

Return 1

Return 2

[<not-conta1ned>] [MMIO-segment>] Return 3

The entry points LOGPHYO and SBLOGPHO will return both even and odd results
after conversion.

LOGPHYO calling sequence:

MOVE.L #26, DO Service request code for LOGPHYO
MOVE.L <logical-address>,D6
MOVE.L <TST-address>,AO
TRAP #0

BRA.S <good-return> Return 1

BRA.S <part-contained> Return 2

[<not-contained>] [<MMIO-segment>] Return 3

139 MICROSYSTEMS

(g) MOTOROLA APPENDIX B

SBLOGPHO calling sequence:

MOVE.L <logical-address>,D6
MOVE.L <TST-address>,AO
BSR SBLOGPHO
BRA.S <contained> Return 1

BRA.S <part-contained> Return 2

[<not-contained>] [<MMIO-segment>] Return 3

On exit, LOGPHY features three returns, depending on the location of the

specified window within, partially within, or completely outside of the

specified memory segment. In the case of all three returns, registers DO, D3,

and D4 are destroyed. Registers D5 and D5 vary with each return. Register AO

remains configured as on entry.

A return to the location following the call indicates that the specified

window lies completely within the specified memory segment. Register D5

contains the offset within the TST to the MMU entry. Register D5 contains the

physical beginning address of the window.

A return to the location following the call, plus two bytes, indicates that

the specified window lies partially within the specified segment. Register 05

contains the offset within the TST to the MMU entry for the portion of the

window contained within the specified segment. Register D6 remains as

configured on entry.

A return to the location following the call, plus four bytes, indicates that

the specified window lies completely outside of the specified segment.

Register 05 contains the offset within the TST of the first empty entry in the

MMU, or it points to the MMIO segment, or it is a zero value indicating no MMU

or MMIO segment. Register D5 remains as configured on entry. In all three

cases, the entry may be retrieved by the addressing structure 0(A0,D5).

B.4.9 PAGEALOG

PAGEALOC allocates physical memory in 255-byte pages. A variety of memory

types and options may be specified. One or more pages may be requested by

specified count, or simply the largest block of contiguous pages which is

currently available. The allocation may be requested from a specified base

address, and the specified block may be MMIO, ROM, or RAM.

^^° MICROSYSTEMS

(M) MOTOROLA APPENDIX B

On entry, register DO contains the service request code. Register AO contains
a 2-word description of the memory type and options desired, and the number of

pages requested:

Bit No. Value Meaning

31-27 00000 Unused.
25 Do not wait if memory not available.

1 Wait if memory not available.
25 Allocate specified number of pages.

1 Allocate largest block available.
24 Allocate where found.

1 Allocate at specified address.
23 Block is RAM.

1 Block is ROM or MMIO.
22-20 nnn Memory types (refer to NOTE below).
19-16 nnnn Partition numbers (refer to NOTE below).
15-0 $nnnn Number of pages to allocate.

NOTE

Memory type and partition number are discussed in detail
in M58000 Family Real-Time Multitasking Software User's
Manual, Chapter 3, "GTSEG" call.

If bit 24 of register AO is 1, then register Al is the 24-bit address from

which the allocation of the block of page(s) should take place. Otherwise,

register Al equals zero. Register A6 contains the address of the caller's

TCB.

PAGEALOC features only one set of entry points, including PAGEALOC and

SBPAGAL:

PAGEALOC calling sequence:

MOVE.L #4, DO Service request code for PAGEALOC
MOVE.L <description>,AO
MOVE.L <physical-address>,Al
TRAP #0

BRA.S <allocated> Return 1

<not-allocated> Return 2

SBPAGAL calling sequence:

MOVE.L <description>,A0
MOVE.L <physical-address>,Al
BSR SBPAGAL
BRA.S <allocated> Return 1

<not-allocated> Return 2

B

^^^ MICROSYSTEMS

(M) MOTOROLA APPENDIX B

On exit, PAGEALOC returns to the instruction following the call if the page

allocation request succeeded. If page allocation was not successful, return
is to the instruction following the call, plus two bytes.
If page allocation was successful as requested, register Dl contains a 1-byte

value indicating the partition number within which the allocation occurred, as

follows:

Bit No. Value Meaning

31-16 $0000 Unused.
15-8 $00 Unused.
7-4 nnnn Memory type.
3-0 nnnn Memory partition number

Register D2 echoes the number of pages allocated if a specified number was

requested, or states the number allocated if the largest-block option was

specified with the call. Register AO contains the physical base address of

the allocated block. Registers Al and A2 were destroyed, and register AS

remains configured as on entry.

If the allocation failed, registers DO, Dl, D2, AO, Al, and A2 are assumed to

be destroyed.

B.4.10 PAGEFREE

PAGEFREE deallocates one or more 256-byte pages of memory. If more than one

page of memory is freed, the second and successive pages are incrementally
contiguous to the first page freed.

On entry, register DO contains the service request code. Register Dl contains
the number of pages to be freed. Register AO contains the starting address of

the first page to be freed.

PAGEFREE features a single set of entry points, including PAGEFREE and SBPGFR.

PAGEFREE calling sequence:

MOVE.L #5, DO Service request code for PAGEFREE
MOVE.L <page-count>,Dl
MOVE.L <start-address>,AO
TRAP #0
BRA.S <pages-freed> Return 1

<not-freed> Return 2

SBPGFR calling sequence:

MOVE.L <page-count>,Dl
MOVE.L <start-address>,AO
BSR SBPGFR
BRA.S <pages-freed> Return 1

<not-freed> Return 2

142 MICROSYSTEMS

(M) MOTOROLA APPENDIX B

On exit, PAGEFREE returns to the instruction following the call if the

deallocation was successful. It returns to the instruction following the

call, plus two bytes, if the deallocation was not successful. In both cases,
registers DO, Dl, D2, AO, Al, and A2 are destroyed.

B.4.11 PAUSE

The currently running Executive procedure issues a call to PAUSE when it must
wait on the occurrence of an external event before continuing. As a

consequence of issuing the call, the task which called the currently running
Executive procedure will be placed in a "return-to-Executive" state. Control

will then be given to the dispatcher.

Control will return to the instruction following the call to PAUSE after the

suspended user task is moved to the READY state by some other Executive
procedure. (Refer to the READY routine, B.4.14.)

On entry, register DO contains the service request code. Register A5 contains
the target task's TCB address. Register A6 is loaded with the running task's
TCB address whenever a TRAP #1 directive is called. Register A6 should not be

modified by any Executive procedure executing as part of a TRAP #1 directive.

PAUSE features a single set of entry points, including PAUSE and SBPAUSE.

PAUSE calling sequence:

MOVE.L #14, DO Service request code for PAUSE
MOVE.L <TCB-address>,A6
TRAP #0

SBPAUSE calling sequence:

MOVE.L <TCB-address>,A5
BSR SBPAUSE

On exit, PAUSE returns to the instruction following the call. Register DO is

destroyed and register A6 is configured as on entry.

B.4.12 PVSEN

PVSEM manages the queuing and dequeuing of tasks requesting exclusive use of a

system resource. PVSEM should not be called from an interrupt service
routine.

On entry, register DO contains the service request code. Register AO contains
the address of the semaphore. The semaphore is a 6-byte field constructed as

illustrated at "SEMAPH" in the call sequence below. Register A6 contains the
running task's TCB address. The configuration of register A6 occurs whenever
a TRAP #1 directive is called. A6 should not be modified by any Executive
procedure executing as part of a TRAP #1 directive.

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX B

PVSEM features two sets of entry points, one each for requesting and for
releasing exclusive use of a system resource.

Request for exclusive use of a resource is made through entry points PSEM4 and
SBP.

PSEM4 calling sequence:

MOVE.L #1,D0 Service request code for PSEM4
LEA SEMAPH.AO
MOVE.L <TCB-address>,A5
TRAP #0

SEMAPH DC.W #0

DC.L #0

SBP calling sequence:

LEA SEMAPH.AO
MOVE.L <TCB-address>,A6
BSR SBP

SEMAPH DC.W #0
DC.L #0

On entry through either of the above calls, PVSEM verifies the availability
status of the requested resource.

If the resource is available, its availability status is reset to "BUSY", and
control is returned to the caller. The caller is then free to access the
requested resource. On completion of its use, the caller releases the
resource through the calls illustrated below.

If the requested resource is already in "BUSY" status, PVSEM queues the caller
into a linked list of waiting tasks. Return is not made to the caller.
Instead, control is transferred to the dispatcher. When the task queued ahead
of the current caller has released exclusive use of the resource, control
returns to the next caller in the linked list.

Release of an exclusive resource is made through entry points VSEM4 and SBV.

VSEM4 calling sequence:

MOVE.L #2, DO Service request code for VSEM4
LEA SEMAPH, AO
MOVE.L <TCB-address>,A5
TRAP #0

SEMAPH DC.W #0
DC.L #0

^^^ MICROSYSTEMS

(g) MOTOROLA
APPENDIX B

SBV calling sequence:

SEMAPH

LEA SEMAPH, AO
MOVE.L <TCB-address>,A5
BSR SBV

DC.W #0

DC.L #0

D
On exit, return is made to the next instruction following the call. The 2-

byte initial field in "SEMAPH", above, contains a reserved high-order bit

which is always zero on return to the caller. The remaining 15 bits are an

integer count of the number of requests for this same resource which are

queued in the WAIT list behind the current caller. The 15-bit value expresses

the WAIT count as a simple negative; that is, a 15-bit zero minus one equals

$7FFF. The 4-byte field in "SEMAPH", above, is the address of the first TCB

in the WAIT list.

B.4.13 RDTINER

The caller may obtain the time of day from the system timer in the Executive.

On entry, register DO contains the service request code. RDTIMER features a

single set of entry points, RDTIMER and SBRDTIM.

RDTIMER calling sequence:

MOVE.L
TRAP

#28, DO

#0

Service request code for RDTIMER

SBRDTIM calling sequence:

BSR RDTIMER

On exit, control returns to the instruction following the call. Register DO

contains the timer contents; register Dl contains the time of day expressed in

milliseconds.

The contents of DO may be used to calculate microseconds. The timer is loaded

initially with two 8-bit values. Bits 15-8 contain the value of TIMEINTV*4-1;

bits 7-0 contain the value of CLOCKFRQ/4-1. TIMEINTV and CLOCKFRQ are system

generation parameters. Subtracting the current value from the initial setting

and separating the two values will permit the caller to calculate the time

when the timer was read. The precision of the result is controlled by the

setting of CLOCKFRQ at system generation.

145 MICROSYSTEMS

B

(g) MOTOROLA APPENDIX B

B.4.14 READY

The calling Executive procedure causes the designated target task to be moved
to the READY state.

On entry, register DO contains the service request code. Register AO contains
the address of the target task's TCB.

READY features a single set of entry points, READY and SBREADY.

READY calling sequence:

MOVE.L #3, DO Service request code for READY
LEA <TCB-address>,AO
TRAP #0

SBREADY calling sequence:

LEA <TCB-address>,AO
BSR SBREADY

On exit, READY returns to the instruction following the call. Register DO is

destroyed. Register AO is configured as on entry. No arguments are returned.

B.4.15 WAKEUP

On the occurrence of an event that is associated with a task which has elected
wakeup notification method, the event may be moved to the READY state.

If the task is not presently in the WAIT state, WAKEUP will set the status of
the event to wakeup-pending. At a future time when the task places itself in

WAIT state, it will be waked up immediately.

On entry, register DO contains the service request code. Register AO contains
the target task's TCB address. WAKEUP features a single set of entry points,
including WAKEUP and SBWAKEUP.

WAKEUP calling sequence:

MOVE.L #22, DO Service request code for WAKEUP
MOVE.L <TCB-address>,AO
TRAP #0

SBWAKEUP calling sequence:

MOVE.L <TCB-address>,AO
BSR SBWAKEUP

On exit, control resumes at the instruction following the call. Register DO

is destroyed. Register AO remains configured as on entry.

^'^^
MICROSYSTEMS

® MOTOROLA APPENDIX B

TRAP #0 CALLING SEQUENCE SUMMARY

NAME: FUNCTION: Queue event to target task; caller is

EXQEVNTI an interrupt routine (level greater PARA.

SBQEVNTI than 0). B.4.1

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #24 destroyed destroyed
Dl destroyed destroyed
D2 event-data destroyed destroyed
D3 event-data N/C N/C
D4 event-data N/C N/C
D5 event-data destroyed destroyed
D6 event-data destroyed destroyed
D7 event-data destroyed destroyed
AO <TCB> destroyed destroyed
Al [event-data] destroyed destroyed
A2 [event-data] N/C N/C
A3 destroyed destroyed
A4 <ASQ> <ASQ>
A5 <TCB> <TCB>
A6 N/C N/C
A7 N/C N/C

NAME: FUNCTION: Queue event to target task; caller is PARA.
EXQEVNTN not an interrupt routine. B.4.1
SBQEVNTN

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #11 destroyed destroyed
Dl event-data destroyed destroyed
D2 [event-data] N/C N/C
D3 [event-data] N/C N/C
D4 [event-data] destroyed destroyed
D5 [event-data] destroyed destroyed
D6 [event-data] destroyed destroyed
D7 [event-data] destroyed destroyed
AO <task-ID> destroyed destroyed
Al [event-data] destroyed destroyed
A2 [event-data] N/C N/C
A3 destroyed destroyed
A4 <ASQ> <ASQ>
A5 <TCB> <TCB>
A6 N/C N/C
A7 N/C N/C

147 MICROSYSTEMS

® MOTOROLA APPENDIX B

Q
NAME: FUNCTION: Queue event to target task; caller PARA.

EXQEVNTT is not an interrupt routine. B.4.1

SBQEVNTT -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #23 destroyed destroyed
Dl destroyed destroyed
D2 event-data destroyed destroyed
D3 [event-data] N/C N/C

D4 [event-data] N/C N/C

D5 [event-data] destroyed destroyed

D6 [event-data] destroyed destroyed
D7 [event-data] destroyed destroyed
AO <TCB> destroyed destroyed
Al [event-data] destroyed destroyed
A2 [event-data] N/C N/C

A3 destroyed destroyed
A4 <ASQ> <ASQ>
A5 <TCB> <TCB>
A5 N/C N/C
A7 N/C N/C

NAME: FUNCTION: Request periodic activation/ PARA.

EXRQPA deactivation of an Executive procedure. B.4.2

SBRQPA - - -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #34 destroyed destroyed
Dl <options> destroyed destroyed
D2 <request-ID> N/C N/C

D3 N/C N/C

04 N/C N/C

05 N/C N/C

06 N/C N/C

07 N/C N/C

AO <procedure> N/C N/C

Al <interval> destroyed destroyed

A2 N/C N/C

A3 N/C N/C

A4 N/C N/C

A5 N/C N/C

A6 N/C N/C

A7 N/C N/C

148 MICROSYSTEMS

@) MOTOROLA APPENDIX B

NAME: FUNCTION: Locate shared local and global segment PARA.

FNDGSEG entries in Global Segment Table. B.4.3

SBFNDGSG
ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #9 # count # count

Dl <seg-attrib> N/C N/C

D2 <session> N/C N/C

03 destroyed destroyed
D4 N/C N/C

D5 N/C N/C

D6 N/C N/C

D7 N/C N/C

AO <seg-name> # entry # next/#0

Al destroyed destroyed

A2 destroyed destroyed
A3 destroyed destroyed
A4 N/C N/C

A5 N/C N/C

A6 N/C N/C

A7 N/C N/C

Q

NAME: FUNCTION: Locate task segment entry in PARA.

FNDTSEG Task Segment Table. B.4.4

SBFNDSEG

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #7 destroyed destroyed
01 N/C N/C

02 <session> N/C N/C

03 N/C N/C

04 N/C N/C

05 # offset # next/#0

06 N/C N/C

D7 N/C N/C

AO <seg-name> N/C N/C

Al <TST-addr> N/C N/C
A2 N/C N/C

A3 N/C N/C

A4 N/C N/C

A5 N/C N/C

A6 N/C N/C

A7 N/C N/C

149 MICROSYSTEMS

(^ MOTOROLA APPENDIX B

II

NAME: FUNCTION: Locate task semaphore entry in PARA.

FNDUSEM User Semaphore Table. B.4.5
SBFNDSEM

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #12 # entry # entry/#0
Dl destroyed destroyed
02 # count # count/#0
D3 destroyed destroyed
D4 destroyed destroyed
D5 N/C N/C
D6 N/C N/C
D7 N/C N/C
AO <selection> <sem-name> #0
Al N/C N/C
A2 N/C N/C
A3 N/C N/C
A4 <TCB-addr> N/C N/C
A5 N/C N/C
A5 N/C N/C
A7 N/C N/C

NAME: FUNCTION: Locate TCB address in TCB table PARA.
GETTCB (user tasks only). B.4.6
SBGETTCB --- - -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #6 destroyed destroyed
01 destroyed destroyed
02 N/C N/C
03 N/C N/C
04 N/C N/C
05 N/C N/C
06 N/C N/C
07 N/C N/C
AO <table> <TCB-addr> destroyed
Al destroyed destroyed
A2 N/C N/C
A3 N/C N/C
A4 N/C N/C
A5 N/C N/C
A5 N/C N/C
A7 N/C N/C

150 MICROSYSTEMS

® MOTOROLA APPENDIX B

NAME: FUNCTION: Locate KB address in KB Table PARA.

GTXTCB (system tasks only). B.4.6
SBGTXTCB

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #13 destroyed destroyed
Dl <session> destroyed destroyed
D2 N/C N/C
D3 N/C N/C
D4 N/C N/C
D5 N/C N/C

D6 N/C N/C
D7 N/C N/C
AO <task-name> <TCB-addr> destroyed
Al destroyed destroyed
A2 N/C N/C
A3 N/C N/C
A4 N/C N/C

A5 N/C N/C
A6 N/C N/C
A7 N/C N/C

NAME: FUNCTION: Save cause of system trouble and PARA.

KILLERTO crash system. B.4.7
KILLER

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #32 N/A
Dl N/A
D3 N/A
D4 N/A
D5 N/A
D6 N/A
D7 N/A
AO N/A
Al N/A
A2 N/A
A3 N/A
A4 N/A
A5 N/A
A6 N/A
A7 N/A

Q

151 MICROSYSTEMS

® MOTOROLA APPENDIX B

B

NAME: FUNCTION: Convert logical to physical address PARA.

LOGPHY (even numbers only). B.4.8
SBLOGPHY

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #8 destroyed destroyed destroyed

Dl N/C N/C N/C

D2 N/C N/C N/C

D3 destroyed destroyed destroyed

D4 destroyed destroyed destroyed
D5 # offset # offset # offset/#0

D6 <logical-addr> <phys-addr> N/C N/C

D7 N/C N/C N/C

AO <TST-addr> N/C N/C N/C

Al N/C N/C N/C

A2 N/C N/C N/C

A3 N/C N/C N/C

A4 N/C N/C N/C

A5 N/C N/C N/C

A6 N/C N/C N/C

A7 N/C N/C N/C

NAME: FUNCTION: Convert logical to physical address PARA.

LOGPHYO (odd numbers only). B.4.8

SBLOGPHO
ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #26 destroyed destroyed destroyed
Dl N/C N/C N/C

D2 N/C N/C N/C

D3 destroyed destroyed destroyed

D4 destroyed destroyed destroyed

D5 # offset # offset # offset/#0

D6 <logical-addr> <phys-addr> N/C N/C

D7 N/C N/C N/C

AO <TST-addr> N/C N/C N/C

Al N/C N/C N/C

A2 N/C N/C N/C

A3 N/C N/C N/C

A4 N/C N/C N/C

A5 N/C N/C N/C

A6 N/C N/C N/C

A7 N/C N/C N/C

152 M/CROSySTEMS

(g) MOTOROLA APPENDIX B

NAME: FUNCTION: Allocate physical memory pages. PARA.

PAGEALOC B.4.9
SBPAGAL -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #4 N/C destroyed
Dl # partition destroyed
D2 # page-count destroyed
03 N/C N/C
04 N/C N/C
D5 N/C N/C
D6 N/C N/C

D7 N/C N/C
AO [<description>] <phys-addr> destroyed
Al [<phys-addr>] destroyed destroyed
A2 destroyed destroyed
A3 N/C N/C
A4 N/C N/C
A5 N/C N/C
A6 N/C N/C
A7 N/C N/C

NAME: FUNCTION: Deallocate physical memory pages. PARA.

PAGEFREE B.4.10
SBPGFR

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #5 destroyed destroyed
01 # page-count destroyed destroyed
02 destroyed destroyed
03 N/C N/C
04 N/C N/C
05 N/C N/C
06 N/C N/C
07 N/C N/C
AO <address> destroyed destroyed
Al destroyed destroyed
A2 destroyed destroyed
A3 N/C N/C
A4 N/C N/C

A5 N/C N/C
A6 N/C N/C
A7 N/C N/C

153 M/CROS/STEMS

® MOTOROLA APPENDIX B

B
NAME: FUNCTION: Wait for external event. PARA.

PAUSE B.4.11

SBPAUSE -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #14 destroyed
Dl N/C
D2 N/C
D3 N/C
D4 N/C
D5 N/C
D6 N/C
07 N/C
AO N/C
Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C
A6 <TCB-addr> N/C
A7 N/C

NAME: FUNCTION: Request access to exclusive resource. PARA.

PSEM4 B.4.12
SBP - -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #1 destroyed
Dl N/C
D2 N/C
D3 N/C
D4 N/C
D5 N/C
D6 N/C
D7 N/C

AO <'semaphore> N/C
Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C

A6 <TCB-addr> N/C
A7 N/C

154 M/CROSySTEMS

® MOTOROLA APPENDIX B

NAME: FUNCTION: Read time of day. PARA.

RDTIMER B.4.13

SBRDTIM - -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #28 # TIMER
Dl # millisecs
D2 N/C
D3 N/C
D4 N/C

D5 N/C

D6 N/C

D7 N/C

AO N/C

Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C
A6 N/C
A7 N/C

NAME: FUNCTION: Move task to READY state. PARA.

READY B.4.14
SBREADY

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #3 destroyed
Dl N/C
D2 N/C
D3 N/C
D4 N/C
D5 N/C
D6 N/C
D7 N/C
AO <TCB-addr> N/C
Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C
A6 N/C
A7 N/C

155 M/CflOSySTEMS

@) MOTOROLA
APPENDIX B

B
NAME: FUNCTION: Release exclusive resource. PARA.

VSEM4 B.4.12
SBV -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #2 destroyed
Dl N/C
D2 N/C
D3 N/C
D4 N/C

D5 N/C

D5 N/C
D7 N/C
AO <semaphore> N/C
Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C
A6 <TCB-addr> N/C
A7 N/C

NAME: FUNCTION: To wake up task in current or next PARA.

WAKEUP wait state. B.4.15
SBWAKEUP - -

ENTRY EXIT

CALL RETURN 1 RETURN 2 RETURN 3

DO #22 destroyed
Dl N/C
D2 N/C
D3 N/C
D4 N/C
D5 N/C
D6 N/C
D7 N/C
AO <TCB-addr> N/C
Al N/C
A2 N/C
A3 N/C
A4 N/C
A5 N/C
A6 N/C
A7 N/C

156 MICROSYSTEMS

(g) MOTOROLA APPENDIX B

APPENDIX C

VERSAdos TRAP #n MAP

C.l INTRODUCTION

This appendix provides a map of the services provided by the TRAP functions.

C.2 TRAP #n MAP

TRAP NUMBER DESCRIPTION

Services provided by RMS58K for

PROCESSES.

1 Services provided by RMS68K for

TASKS.

2 VERSAdos: Input/Output Services

(reading and writing only).

3 VERSAdos: File Handling Services
(open and close operations).

4 VERSAdos: LDR program loader.

5 - 15 User definable.

If an operating system other than VERSAdos is operating under the RMS58K
Executive, TRAPs #2 through #4 are available for redefinition according to

conventions defined by the alternate system.

157 MICROSYSTEMS

(§) MOTOROLA APPENDIX B

B

THIS PAGE INTENTIONALLY LEFT BLANK.

^^® MICROSYSTEMS

® MOTOROLA APPENDIX D

APPENDIX D

CDB STRUCTURE

D.l INTRODUCTION

This appendix describes the structure of Channel Data Blocks (CDBs) and

Channel Control Blocks (CCBs).

D.2 CDB STRUCTURE

The structure of a CDB is provided in the following paragraphs. Included are

the macro used to define CDBs and descriptions of the data block fields.

D.2.1 CDB Field Format

The file MACRO. DCB. SI contains a macro for defining CDBs. The format of this
macro is as follows:

to define a Channel Data Block (CDB)

by lOI to allocate channels
Length of the CDB data structure.

— CDB SECTION —
Pointer to next CDB in list.

Options for the ALLOCATE command.
Channel mnemonic.
Channel type.

Masked interrupt maximum instruction count.
Physical address of driver.
Supervisor channel's mnemonic (only if bit 3 of options set).

Physical address of device in memory mapped I/O space.

of bytes device occupies in memory mapped I/O space.

Vector number.
Polling priority.
Software priority.
Segment count (number of polling entries).
Polling byte offset. -- [#1] --

Polling mask.
Polling test value.
Offset from physical device address for reset.

Value for reset.
Reserved.
Polling byte offset. -- [#2] --

Polling mask.
Polling test value.
Offset from physical device address for reset.
Value of reset.
Reserved.

* Macro
* Used

CDBLN EQU $2E
CDB MACRO
SECTION 1

DC L *+CDBLN
DC W \1
DC L \2
DC B \3
DC B \4
DC L \5
DC L \6
DC L \7
DC W \8
DC B \9
DC B \A
DC B \B
DC B \C
DC W \D
DC B \E
DC B \F

DC W \G
DC B \H

DC B

DC W \I

DC B \J

DC B \K
DC W \L
DC B \M
DC B

ENDM

159 MICROSYSTEMS

Options -

Bit =
= 1

Bit 1

Bit 2

Bit 3

® AfOTO«OI.>l ''™'^ '

D.2.2 Data Block Field Descriptions

Field descriptions for CDBs are as follows:

Attach requests from any task are honored.
Attach requests from system tasks only are honored.

Reserved.
Exclusive vectoring.
Channel is to be subordinate to Supervisor Channel Mnemonic

field.
Bit 4 Channel is to be a supervisor.

Channel Mnemonic -

Uniquely identifies the channel. It must be nonzero and it must be a

distinct mnemonic from any other channel or value name in the system.

Channel Type -

A code which indicates the physical type of the channel. Interpretation
of this code will cause the CMR handler to handle the INITIATE I/O command
in one of four ways. Channels with code $01 through $0F will pass the

request to the I/O handler with no parameter block checking (nonstandard

CMR channels). Channels with code $10 through $7F will perform parameter
block checks (standard CMR channels and serial port channels). Channels

with code $FF will only notify a task of an interrupt occurring. Channels

with code $80 through $8F will perform parameter block checks (shared-

access channels)

.

Physical Address of Driver -

This field points to an I/O handler. The structure of the I/O handler

must have a service vector table that defines:

- The interrupt service entry point
- The INITIATE I/O command service entry point
- The initialization entry point
- A longword for future use

These are 4-byte fields of absolute addresses. This field is not required

for channel type $FF, which assumes the interrupt is cleared when the CMR

handler polls the device and finds it activated.

Base Address of Memory Mapped I/O Space -

Physical address of a readable byte in memory of the memory mapped I/O

space for this channel, usually a status register on the device.

Length of Memory Mapped I/O Space -

Number of bytes in the memory mapped I/O space for this channel.

^^° MICROSYSTEMS

(g) MOTOROLA APPENDIX D

Hardware Vector Number -

Indicates the associated hardware vector. It must be an auto vector
(values 25 through 31) or a user vector (64 through 255).

Hardware Priority Level -

Indicates the hardware interrupt level associated with the channel. It

must be a value in the range of 1 through 7, inclusive.

Software Priority Number -

Indicates the position of the CDB within the polling chain. A higher
value of the software priority level will result in faster service to the

channel when it interrupts.

Number of Polling Table Entries -

Indicates the number of 8-byte polling table entries which follow. This
number can be in the range of 1 through 4, inclusive. For each type of
interrupt associated with a channel, one 8-byte table entry is required to

describe the details of that interrupt. When an interrupt occurs, the
following algorithm is used to determine if this particular channel caused
an interrupt.

The polling byte defined by the polling byte offset is read. If the

polling test value is zero, the polling byte is complemented; otherwise,
it is left unchanged. The resulting polling byte is then ANDed with the

polling mask. If this result is nonzero, it is assumed that this channel
caused the interrupt.

These entries are used only for interrupt-only channels and for channels
which are nonstandard.

Polling Byte Offset -

The zero-relative offset from the base of memory mapped I/O space for this
channel where the polling byte resides. Refer to the polling algorithm
described in "Number of Polling Table Entries".

Polling Mask -

Used in the polling algorithm to determine if this channel caused an

interrupt. Refer to the polling algorithm described in "Number of Polling
Table Entries".

Polling Test Value -

Used in the polling algorithm to determine the polling byte value. Refer
to the polling algorithm described in "Number of Polling Table Entries".

D

^^^ MICROSYSTEMS

B

® MOTOROLA 'APPENDIX D

Reset Byte Offset -

The zero-relative offset from the base of memory mapped I/O space for this

channel where the reset byte resides.

Reset Value -

Used by the interrupt service to clear random or unexpected interrupts on

a channel. It is critical that the reset byte offset and reset value be

defined correctly to prevent infinite loops in the polling routine caused

by interrupts that cannot be cleared.

D.2.3 CDB Macro Example

An example of the CDB macro is illustrated in Figure 1.

D.3 CCB STRUCTURE

Some of the universally defined fields in a CCB are used primarily by the CMR
handler, and others are important to the I/O device driver that manages the

channel. The structure of a CCB is diagrammed as follows:

The following fields in a CCB are set at ALLOCATE time.

$00
+ + +

"!CCB" {Eye catcher to aid in dump analysis)
+ + - +

CCBALL (Link to the next CCB in the list of all CCBs)$04

$08 CCBPOLL (Link to next CCB in polling list for interrupt vector)
+ + - + -

The next field of a CCB is set at ATTACH time.

I
- + + +

I

$0C
I

CCBTLNK (Link to the next CCB attached to the same task)
|

I
+ + +

I

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX D

— o

— a. -a

> ooo o o
c 3
o

CD m
1- c
q:O
Q. UJ e
+ 1- 3

c < E

-*- o c

D ••- - <*- e -^
u

o *-
V) V *- — 1^

o c >N 4-'

'*- E *^ c

V) _ _
c V 0) n
o c c 4>

c L. JC
o O m

a x: J-

O O O S

- — OT — m

m ^ *-

Q. to Q. O >

Is Z «

D >* -^
> £ «>

I- o *- aw
o — c a> -a£ -^ v

- Q. O >, D 4) O
Q. o X) e +- fc- I-

ID H- O T)
Cn k- -•-' Q> O^ O^ tt- 4)COCCCC*- >
- * 4) — .- .- fl> 0) i_

_*-. g___ Of) 3 g)— t- o»— — — t»_— (0004>000'^0«)
Q.{/)(/)Q.D.D.o>a:

*- (0 W E '-

>. O V o
XI E — 1- i-

Q. Q. £L o > a:

a.

o
u

00OO

o &
:s: O) ®
o ®O ® ©
_J ® Kl
CD t'* t*t

0)

CD CD LJ h- bJ QQ G) 2 Z O 2 <oo<<-*tn<>
+ ®2XmCLZUJ
• tftOO(N2C/lQ

> -I
O O ®
O O ro^ —' -fef* <SJ OOOGDOOOOOOOGl

t-_Ji:_JCDGCl—I—l-fiCDODCDDQSGQmSmmiCDaiSODCrio
O (J (J o o oo o o o o o

w~ <
51 00 © © L.
® ® to © fO O
(S> 9 ® CD CM
<S> ® lO cn m uJ
<S> ® O) Q © © u. © © © ©® <S) S} -* © in L. © © © © ©o o o to in UJ © rO © © CM * © © © © © © © © © © © © ® ©
5> G> s> -* to ti- © m © © m © ro © © © © © © © © © © © © ©

oo 00 o (S CM (£> r^ oo o © -* CO f^ 00 O) < o o LJ ® ^ C^J * in (O DO CT)

«3 <D m (D <£> (D to (O i£} r^ r-- r^ t^ P^ r- r- r^ rv r^ 00 oo 00 oo CO CO 00 00
o o (S) <s> o © © © © © © © © © © © © © © © © © © © OO O o o <S) © © © © © © © © © © © © © © © o © © © © © ©

G> O ® <s> o o ©O ® (S> o o ® © © © © © O © © © © © © o © o © © © © © ©O ® © © s> o o © © © © © © © © © © © © © © © ® © © © ©
® O o o o 63 ©

163 MICROSYSTEMS

(M) MOTOROLA APPENDIX D

The following fields in a CCB are set at ALLOCATE time.

D

$10

$14

$18

$19

$1A

$1E

$22

$26

$28

$29

$2A

$2B

+ + +

CCBSUB (Link to CCB of next subordinate channel if one exists)

CCBMNEM (Unique channel ID mnemonic for this channel)
+ + +

CCBTYPE
I

<-- (Channel type; $10 - $5F for standard chan.

I
$50 - $7F for serial port chan.

CCBCMCT
I

<-- (For CHPI, Channel Program Interpreter)

CCBUSER (Physical address of driver's command service routine)
+ + - + --

CCBRTNI (Physical address of driver's interrupt service routine)

CCBCHB (Physical address of channel's memory mapped I/O space)

+ + +

CCBMME
I

<-- (Length of I/O memory space)

+
I

CCBVECT

CCBPPRIO

CCBSPRIO

CCBPECT

<-- (Vector number of interrupt for this channel)

<-- (Hardware interrupt priority level; 1-7)

<-- (Software interrupt polling priority level)

<-- (Number of polling table entries for a non-

standard or interrupt-only channel)

The following fields in a CCB are set at ATTACH time.

$2C CCBRQST

+ + +

(Taskname and session number of the task that is

attached to the channel; I/O events should be

queued to this task, which is normally lOS)

$34 CCBRQSTA (Physical address of the above task's TCB)
1 _i_ A. ___

$38 CCBKEY

1
- -

T-
- -r

<-- (Key supplied by task attached to channel)

$39 CCBRTN <-- (Return option; specified by attached task)

$3A CCBASQL <-- (ASQ entry length for attached task)

$3B Unused <-- (Necessary for word alignment)
1 _i_ _ _

$3C CCBSVVC

^ -T- - -p

(Logical address of service routine for channel events)

+ + +
1

164 MICROSYSTEMS

AA) MOTOROLA APPENDIX D

The following fields in a CCB are set at ALLOCATE time.

$40

$42

$44

$48

$4A

+
I

CCBSR (SR value to enable int) |

<-- (Enables channel interrupts)

+
I

CCBISR (SR value to mask int) |

<-- (Masks channel interrupts)

CCBVADR (Physical address of this channel's interrupt vector)

+ + + -

CCBSTR (Flag bits used by CMR) |

<-- (Dynamically updated by CMR)

+
I

CCBJSR (JSR instruction; sends
|

control to the CMR --|

handler when an
|

interrupt for this --|

channel is received)
j

+
I

D
The following fields in a CCB are set for each command to INITIATE I/O.

+ + +

$50
i

CCBTASKA (Physical address of the TCB of task that owns lOCB)

I

+ + + -
I

$54
I

CCBTASK (Taskname and session number of the task that owns the

lOCB for the latest I/O request; this field and the

field above are valid until a new I/O request occurs)

+ + +

The following CCB fields are reserved for future device-independent use.

+ + +

(Reserved for future device-independent use)$5C

$6C
I

The remaining fields in a CCB are reserved for device-dependent variables.

-+ + +-

(Device-dependent variables)$70

$FF

165 MICROSYSTEMS

@) MOTOROLA APPENDIX D

The individual universally defined fields of a CCB are specified by the OFFSET
block that follows, and the fields are described in detail as they are
defined.

OFFSET

DS.B 4

CCBALL DS.B 4

B

CCBPOLL DS.B 4

CCBTLNK DS.B 4

This OFFSET block defines the structure for a CCB.

The CMR handler sets this field at ALLOCATE time
to contain "!CCB" as an eye catcher to aid in the
analysis of system dumps.

This field contains a link to the next CCB in the
list of all CCBs. All CCBs in the entire system
are linked together in the order in which they are
allocated, and a zero link value marks the end of
the list. A zero link value is universally used
to mark the end of any CCB list.

All the CCBs in the entire system must be linked
together into a list so that the CMR handler can
verify at ALLOCATE time that the channel ID

mnemonic for the channel that is being allocated
is unique. The CMR handler also uses the list of
all CCBs to find the CCB that corresponds to the
channel ID mnemonic that is given in a CMR
parameter block with an I/O request.

This field contains a link to the next CCB in the
polling list for the channel's interrupt vector.
Several I/O devices typically share a single
interrupt and, thus, share the same interrupt
vector. All of the CCBs for the devices on a

single interrupt vector are linked together into a

polling list, and a zero link value marks the end
of the polling list.

When an I/O interrupt occurs, the CMR handler
receives control. The CMR handler then goes
through the interrupt vector's polling list to

give the device driver for each channel in the
polling list a chance to answer the interrupt.
This polling process terminates when some device
driver claims the interrupt as its own. CCBs near
the front of a polling list have higher software
priority than the CCBs near the back of the
polling list because drivers for CCBs at the front
of the polling list are polled first.

This field contains a link to the next CCB that is

attached to the same task. In actual practice,
all channels are attached to lOS, but a channel
could be attached to any task. If a task were to
be aborted, the system might wish to detach all

channels that were attached to that task.

165
MICROSYSTEMS

® MOTOROLA APPENDIX D

9CBSUB DS.B This field contains a link to the next CCB in the
list of subordinate CCBs. Subordinate CCBs arise
when multiple CCBs are required to provide service
for a single hardware device. In this case, there
are one supervisor CCB and two or more subordinate
CCBs for the hardware device, and the CCBSUB field
of the supervisor CCB is used to link the
supervisor CCB to the list of subordinate CCBs for
the device. The CCBSUB field of each subordinate
CCB contains a link to the next subordinate CCB in

the list, and a zero link value marks the end of
the list.

The interrupt-handling routine of the driver for
the supervisor CCB receives control from the CMR
handler when the hardware device generates an

interrupt. The supervisor interrupt handler
determines what particular service is required,
and then the supervisor interrupt handler passes
control to the interrupt handler of the
subordinate driver that provides the required
service. Thus, the interrupt handler for a

subordinate driver receives control only after the
interrupt handler for the supervisor driver has
determined that the subordinate interrupt handler
should receive control, and subordinate CCBs do
not appear directly in any polling lists.

The fields from CCBMNEM through CCBPECT must always be kept together in
consecutive memory locations because there is code in the system that accesses
all of these fields with a single MOVEM.L instruction.

CCBMNEM DS.B

CCBTYPE DS.B

This field of a CCB contains the channel ID

mnemonic. The channel ID mnemonic is established
at ALLOCATE time (by lOI in practice), and the
channel ID mnemonic then serves as a unique
identifier for the channel. The channel ID

mnemonic must be nonzero, and it must not be
duplicated by any other channel ID mnemonic.

This field is set up at ALLOCATE time to specify
the channel type. General classifications of type
codes are as follows:

CCBCMCT DS.B

$01 - $0F Nonstandard CMR channels.
$10 - $5F Other standard channels.
$60 - $7F Serial port channels.
$80 - $8F Shared-access channels.
$FF Interrupt-only channels.

This field is used by the Channel Program
Interpreter (CHPI), and is retained only for
purposes of backward compatibility.

167 MICROSYSTEMS

(g) MOTOROLA
APPENDIX D

CCBUSER DS.B 4

CCBRTNI DS.B 4

B
CCBCHB DS.B 4

The CMR handler sets
time to contain the
Driver's Command Servi

handler obtains the

vector table that is

the driver. The CMR
CCBUSER field of the

the DCSR to respond
I/O transaction.

up this field at ALLOCATE
physical address of the

ce Routine (DCSR). The CMR
address of the DCSR from a

located at the beginning of

handler later uses the

CCB when it needs to invoke

to a command to initiate an

The CMR handler sets up this field at ALLOCATE

time to contain the physical address of the

Driver's Interrupt Service Routine (DISR). The

CMR handler obtains the address of the DISR from a

vector table that is located at the beginning of

the driver. The CMR handler later uses the

CCBRTNI field of the CCB when it needs to invoke

the DISR to respond to an interrupt.

The CMR handler sets up this field at ALLOCATE
time to contain the physical memory address of

some byte (usually the first byte) of the

channel's memory mapped I/O area. All

communication with the I/O device(s) on the

channel is done through this memory mapped I/O

area, and the device driver uses the CCBCHB field

of the CCB to find out where the memory mapped I/O

area is located. The CMR handler uses this

address to do a read from the channel to determine
if it is physically attached. Therefore, this

must be a readable location.

CCBMME DS.B 2 The CMR handler sets up this field at ALLOCATE
time to tell how many bytes of the MC68000 memory
space are dedicated to the channel's memory mapped

I/O space. Although some bytes within the memory
mapped I/O- space might not be used, they must
still be included in the byte count (e.g., M6800
peripherals occurring only on odd addresses).

The CCBMME value is utilized by a system-level
initialization routine. That routine reads one or

more bytes (as indicated by the CCBMME value) from

the memory mapped I/O area to verify the presence
or discover the absence of the I/O channel in

question. A bus error indicates that the I/O

channel in question is missing. The lack of a bus

error indicates that the channel exists.

168 MICROSYSTEMS

@) MOTOROLA APPENDIX D

CCBVECT DS.B 1

CCBPPRIO DS.B 1

The CMR handler sets up this field at ALLOCATE
time to contain the vector number of the interrupt

vector that corresponds to this channel. The

vector number is in the range 25 through 31 if the

channel uses an auto-vector interrupt, and in the

range 64 through 255 if the channel hardware
provides its own interrupt vector number at

interrupt time. The value in this field must
agree with the actual configuration of the system.

The CMR handler sets up this field at ALLOCATE
time with the hardware interrupt priority level

for the channel's interrupt. The MC68000
recognizes interrupt priority values in the range
1-7, so the value in this field is in that range.

The highest possible priority is 7; the lowest is

1.

CCBSPRIO DS.B 1

CCBPECT DS.B 1

CCBRQST DS.B 4*2

CCBRQSTA DS.B 4

The CMR handler sets up this field at ALLOCATE
time to contain the software interrupt priority

value. The CMR handler uses the unsigned software

interrupt priority value as a key for maintaining
a sorted polling list of the CCBs that share a

common interrupt, and CCBs with higher software
interrupt priority values end up closer to the

front of the polling list. The software interrupt
priority value is in the range through 255.

The CMR handler sets up this field at ALLOCATE
time to tell how many entries there are in the

channel's polling table. This value is not

meaningful for standard channels; it is useful for

nonstandard channels and interrupt-only channels.

The CMR handler sets up this field at ATTACH time

to contain task ID and session number of the task

attached to the channel. Channel I/O events should

be queued to this task, which is normally lOS.

The CMR handler sets up this field at ATTACH time

to contain the physical address of the Task

Control Block (TCB) for the task that is attached

to the channel. Channel I/O events should be

queued to this task, which is normally lOS.

169 MICROSYSTEMS

® MOTOROLA APPENDIX D

CCBKEY DS.B 1

CCBRTN DS.B 1

D

The CMR handler sets up this field at ATTACH time

to contain a key that is supplied by the task

(normally IDS) attached to the channel. The

device driver includes this key value in all I/O

events that it queues to the attached task, so the

attached task can use this key value to identify

the particular channel associated with any given

I/O event. Therefore, the CCBKEY value serves as a

channel identifier that is unique among the

channels that are attached to a particular task.

The CMR handler sets up this field at ATTACH time

to indicate how the device driver should notify

the attached task of the completion of an I/O

transaction. The values in this field are

interpreted as follows.

0: Put the completion status into a buffer and

issue a wakeup to the attached task.

1: Put the completion status into an event, and

queue the event to the attached task. The

attached task will receive the event in its

Asynchronous Service Queue (ASQ).

The CCBRTN field of the CCB is not recognized by

VERSAdos device drivers. VERSAdos device drivers

assume that the value of the CCBRTN field is 1.

CCBASQL DS.B 1 The CMR handler sets up this field at ATTACH time

to tell how many bytes the attached task can

accept in an event entry of the task's ASQ. The

device driver must limit the length of event

messages to that specified in this field of the

CCB.

DS.B 1

CCBSVVC DS.B 4

This field is meaningless unless the value of the

CCBRTN field is 1.

This field of a CCB is not used. It is reserved

because the next field of a CCB must be aligned on

a word boundary.

The CMR handler sets up this field at ATTACH time

to contain the logical address of the routine (in

the attached task) that should be invoked to

respond to an I/O event from this channel. A

task's Asynchronous Service Routine (ASR) normally

responds to all events, but a task can specify a

special routine that is to be invoked in response

to events from a particular channel.

170 MICROSYSTEMS

(g) MOTOROLA
APPENDIX D

CCBSR DS.B

CCBISR DS.B

If the attached task does not specify a special

routine to be invoked in response to I/O events

from this channel, the CMR handler simply clears

the CCBSVVC field to indicate that the task's ASR

will respond to I/O events.

The CCBSVVC field of the CCB is meaningless unless

the value of the CCBRTN field is 1.

The CMR handler sets up this field at ALLOCATE

time to contain a Status Register (SR) value that

will enable interrupts in supervisor state at the

hardware priority level of the channel's

interrupt. Therefore, the value of the CCBSR field

is $2x00, where x equals one less than the value

of the CCBPPRIO field. Bit 13 of the CCBSR field

is set because I/O device drivers always run in

the supervisor state. A device driver must run in

the supervisor state so it can change the

interrupt level in the SR.

When a device driver's interrupt handling routine

receives control, interrupts at the level of the

channel's interrupt are masked by the SR. If the

interrupt belongs to the driver, the driver's

interrupt handling routine should quickly mask or

clear the interrupt at the device level and then

set the SR equal to the CCBSR value as soon as

possible to allow interrupts at the channel's

priority level

.

This procedure is necessary because other channels

typically run at the same interrupt level, and the

interrupts from these other channels of equal

priority should not be masked any longer than is

absolutely necessary. Interrupts at lower priority

levels can remain masked while the interrupt

handling routine for this channel finishes its

work.

The CMR handler sets up this field at ALLOCATE

time to contain an SR value that will mask

interrupts in supervisor state at the hardware

priority level of the channel's interrupt.

Therefore, the value of the CCBISR field is $2y00,

where y equals the value of the CCBPPRIO field.

Bit 13 of the CCBISR field is set because device

drivers always run in the supervisor state. A

driver must run in the supervisor state so that it

can change the interrupt level in the SR.

171 MICROSYSTEMS

® MOTOROLA APPENDIX D

Q
CCBVADR DS.B

CCBSTR DS.B
CCBFGATH EQU

2

15

When a device driver needs to mask all interrupts
at the level of the channel's interrupt, it can
set the SR equal to the value of the CCBISR field.
A driver should mask interrupts at its interrupt
level only briefly. Other channels typically run
at the same interrupt level, and interrupts from
these other channels of equal priority should not
be masked any longer than is absolutely necessary.

When a DCSR is invoked,
levels are enabled. The
interrupt priority level

possible.

all interrupts at all

DCSR should keep the
set at zero as much as

The CMR handler sets up this field at ALLOCATE
time with the physical address of the interrupt
vector for this channel's interrupt. A device
driver can use this address if it must simulate an

interrupt. Sometimes a simulated interrupt is

helpful when a driver is trying to start a device.

This field contains some flag bits used by the CMR
handler.

CCBJSR DS.B The CMR handler sets up this field at ALLOCATE
time to contain a JSR instruction that addresses
the CMR interrupt handling routine. The actual
interrupt vector for a channel points to the
CCBJSR field of the first CCB in the interrupt
vector's polling list, and the JSR instruction
there transfers control to the CMR handler when an

interrupt for a channel in the polling list
occurs. The PC value that the JSR instruction
pushes onto the stack allows the CMR handler to
locate the first CCB in the interrupt vector's
polling list. Therefore, the CMR handler can start
polling the device drivers from the polling list
to find the one that controls the interrupting
device.

CCBIOH EQU The following fields of a CCB are set by the CMR
handler when a command to initiate an I/O
transaction is received, so this part of a CCB
changes every time a task requests an I/O
transaction.

CCBTASKA DS.B 4

CCBTASK DS.B 4*2

This field contains the physical address of the
TCB for the task that owns the lOCB for the last
I/O request that was issued for this channel.

This field contains the task ID and the task
session number of the task that owns the lOCB for
the last I/O request that was issued for this
channel

.

172 MICROSYSTEMS

® MOTOROLA APPENDIX D

CCBRESVl DS.L
CCBRESV2 DS.L
CCBRESV3 DS.L
CCBRESV4 DS.L
CCBRESV5 DS.L

CCBDDP EQU

These universally defined CCB fields are reserved

for future use. By using these fields for future

universally defined CCB variables, the universally
defined CCB structure can be extended with no need

to reassemble all the existing programs that use

the CCB.

The remaining part of a CCB is available for use

by the channel's driver for device-dependent
variables.

D

173 MICROSYSTEMS

@) MOTOROLA APPENDIX D

B
THIS PAGE INTENTIONALLY LEFT BLANK.

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX E

APPENDIX E

DCB STRUCTURE

E.l INTRODUCTION

This appendix defines the macros used to define Device Control Blocks (DCBs).

These macros are located in the VERSAdos file MACRO. DCB. SI, which is released

by Motorola under user number 9998. Users may move this file into user number

9100 with the COPYSGEN chainfile. Refer to the System Generation Facility

User's Manual for details about COPYSGEN, and to Chapters 5 and 6 of this

guide for the correct placement of COPYSGEN in the driver addition procedure.

DCB examples are provided as sample data structures for driver writers.

E.2 MACROS for DCBs

* MACRO. DCB. SI -- DEFINES BASIC DCB AND CDB MACROS
* DCB = Device Control Block: contains information about device, including

default configuration; used heavily by FMS, FHS, and lOS.

* DIPDCB macro
* other device
DIPDCB MACRO
DC.L *+\l
DC.L \2
DC.L
DC.L \3
DC.L \4
DC.L
DC.L \5
DC.W
DC.W
DC.L
DCB \6
DCB \7
DC.L \8
DCB \9
DCB
DC.L
DS.B lOSBLN
DC.L
DCB
DCB
DC.L
DC.L
DC.L
DC.L
DC.L

*
\A

DC.L
DC.L 0,0,0,
ENDM

defines device- independent portion of a DCB. Used by the

-dependent macros DSKDCB, CRTDCB, PRTDCB.

Address of next DCB in linked list.

ASCII identification for this DCB.

Address of DCQ entry.
Name of task making the request.
Session of task making the request.
Address of LUT.

Device attributes associated with DCB. BKM 7/12/83
Write/read protect codes.
"Device in use" flag.

Write/read counts.
Device flag (device code).

Device flag {device status).
Channel identification.
Device number associated with the channel.

Task priority.
Current record #.

Storage area for the lOCB being processed.
Logical address of lOCB in user's address space.

Configuration coordination flag (0 --> at defaults).

Break count.
Address of break service LUT.

Break service address.
Event claimer -- taskname. BKM 7/12/83
Event claimer -- session number. BKM 7/12/83
Address of supervisor DCB or session BKM 7/12/83
number if this is a supervisor DCB. BKM 7/12/83
Supervisor/subordinate DCB open count. BKM 7/12/83

) Device independent/dependent buffer zone.

B

175 MICROSYSTEMS

B

(g) MOTOROLA APPENDIX E

* Macro to define DCB for a disk.
*

DSKDCB MACRO
SECTION — DCB SECTION —
DIPDCB DDCBLN,\1,\2,\3A4,\5,\6,\7,\8,0
DCB 0,0,0,0 Space for status fields.

Attributes mask.
Parameters mask.
Attributes word.
of bytes/sector.
Total # of sectors -- returned information.
Write time-out.
Read time-out.
of sectors/track.
of heads.
of cylinders on media.
Interleave factor.
Spiral offset (in sectors).
Physical sector size of media.
Starting head number on drive.
Number of cylinders on drive.
Precompensation cylinder number.
Physical sectors per track on drive.
Stepping rate.

Reduced write current cylinder number.
ECC data burst length.
2 bytes reserved as offset to another parameter block.

* Macro to define DCB for a terminal.
CRTDCB MACRO
DIPDCB CDCBLN,\1,\2,\3,\4,\5,\6,\7,\8
DCB 0,0,0,0 Space for status fields.

DCW \9
DCW \A
DCW \B
DCW \c

DCL \D
DCL \E
DCL \F
DCB \G
DCB \H
DCW \I

DCB \J

DCB \K
DCW \L
DCW \M
DCW \N
DCW \o
DCB \P
DCB \Q
DCW \R
DCW \s
DCB 0,0
ENDM

DCW \9 Attributes mask.
DCW \A Parameters mask.
DCW \B Attributes word.
DCW \c # of characters/line.
DCL \D # of lines/page.
DCL \E Write time-out.
DCL \F Read time-out.
DCB \G XOFF character.
DCB \H XON character.
DCB \I BREAK EQUIVALENT character.
DCB \o DISCARD OUTPUT character.
DCB \K REPRINT LINE character.
DCB \L CANCEL LINE character.
DCL \M Read terminators.
DCL \N End-of-line string.

DCB \o BAUD rate code.

DCB \P NULL padding.
DCB \Q Terminator class.

DCB \R Terminal type {0=EX0Rterm 155).

DCB 0,0 0,0,0,0 Reserved.
ENDM

^^^ MICROSYSTEMS

(M) MOTOROLA APPENDIX E

*

* Macro to define DCB for a printer.
*

PRTDCB MACRO
DIPDCB PDCBLN \1,\2,\3,\4,\5,\6,\7,\8
DCB 0,0,0 ,0 Space for status fields.
DC.W \9 Attributes mask.
DC.W \A Parameters mask.
DC.W \B Attributes word.
DC.W \c # of characters/line.
DC.L \D # of lines/page.
DC.L \E Write time-out.
DC.L Read time-out.
DC.W \F Logical line length.
DCB \G End-of-line character.
DCB.B 15,0 Reserved space (15 bytes)
ENDM

E.3 DCB MACRO EXAMPLES

E.3.1 A Terminal DCB Example

The following input parameters:

/I CNIO /B TCP$ATW A $18
/2 lOSID /C 80 /M $0DDE0000

/3 lOSESS /D 24 /N $0D0A0000

/4 $133 /E 120000 /O $03

/5 30 /F 900000 /P
/6 1 /G $17 /Q $00
/7 COMl /H /R $00
/a /I $03

/9 $47C /J $0F
/A 1801 /K $13

CRTDCB 'CN10M0SID,I0SESS, $133, 30,1, 'COMl', 0,$047C, $1801, TCP$ATW, 80, 24,

120000, 900000, $17,0, $03, $0F, $13, $18, $0DDE0000,$0D0A0000, $03,0, $00, $00

were used to create the following terminal DCB:

DIPDCB CDCBLN, 'CNIO' , lOSID, IGSESS,$133,30, 1, 'COMl' ,0

DC.L *+CDCBLN Address of next DCB in linked list.

ASCII identification for this DCB.

Address of DCQ entry.
Name of task making the request.
Session of task making the request.
Address of LUT.

Attributes of device associated with this DCB.

Write/read protect codes.
"Device in use" flag.

Write/read counts.
Device flag (device code).

Device flag (device status).

^^^ MICROSYSTEMS

DC.L 'CNIO'

DC.L
DC.L lOSID
DC.L lOSESS
DC.L
DC.W $133
DC.W
DC.W
DC.L
DCB 30
DCB 1

® MOTOROLA APPENDIX E

B

DC.L 'COMl' Channel identification.
DC.B. Device number associated with the channel.

DC.B Task priority.
DC.L Current record number.
DC.B lOSBLN Storage area for the lOCB being processed.
DC.L Logical address of lOCB in user's address space.

DC.B Configuration coordination flag (0 --> at defaults),

DC.B Break count.
DC.L Address of break service LUT.

DC.L Break service address.
DC.B 0,0,0,0 Space for status fields.
DC.W $047C Attributes mask.

DC.W $1801 Parameters mask.
DC.W TCP$ATW Attributes word.

DC.W 80 Number of characters/line.
DC.L 24 Number of lines/page.
DC.L 120000 Write time-out.
DC.L 900000 Read time-out.
DC.B $17 XOFF character.
DC.B XON character.

DC.B $03 Break equivalent character.
DC.B $0F Discard output character.
DC.B $13 Reprint line character.
DC.B $18 Cancel line character.
DC.L $0DDE0000 Read terminators.
DC.L $0D0A0000 End-of-line string.
DC.B $0E Baud rate code.
DC.B NULL padding.
DC.B $00 Terminator class.
DC.B $00 Terminal type (0=EXORterm 155).

DC.B 0,0,0,0,0,0 Reserved.

E.3.2 A Printer DOB Example

The following input parameters:

/I PRTDV /B PCP$ATW

n lOSID /c 132

/3 lOSESS /D 66

/4 $632 /E 120000

/5 95 /F 132

/6 1 /G $0A

n CPRT

/8
/9 $0007
/A $0033

PRTDCB PRTDV, IOSID,IOSESS, $632, 95,1, 'CPRT', 0, $0007, $0033, PCP$ATW, 132,

66, 120000, 132, $0A

178 MICROSYSTEMS

® M<yrOROLA "'^'^ '

were used to create the following printer DCB:

PDCBLN,PRTDV,I0SID,I0SESS,$532,95,1,'CPRT',0
Address of next DCB in linked list.

ASCII identification for this DCB.

Address of DCQ entry.
Name of task making the request.

Session of task making the request.

Address of LUT.

Attributes of device associated with this DCB.

Write/read protect codes.
"Device in use" flag.

Write/read counts.
Device flag (device code).

Device flag (device status).
Channel identification.
Device number associated with the channel.

Task priority.
Current record number.

Storage area for the lOCB being processed.

Logical address of lOCB in user's address space.

Configuration coordination flag (0--> at defaults),

Break count.
Address of break service LUT.

Break service address.
Space for status fields.
Attributes mask.

Parameters mask.

Attributes word.

Number of characters/line.
Number of lines/page.
Write time-out.
Read time-out.
Logical line length.
End-of-line character.
Reserved space (15 bytes).

E.3.3 A Disk DCB Example

The following input parameters:

DIPDCB PDCBLN.P
DC.L *+PDCBLN
DC.L PRTDV
DC.L
DC.L lOSID
DC.L lOSESS
DC.L
DC.W $632
DC.W
DC.W
DCB
DCB 95

DCB 1

DC.L 'CPRT'

DCB
DCB
DC.L
DS.B lOSBLN
DC.L
DCB
DCB
DC.L
DC.L
DCB 0,0,0,0
DC.W $0007
DC.W $0033
DC.W PCP$ATW
DC.W 132

DC.L 66
DC.L 120000
DC.L
DC.W 132

DCB $0A
DCB 15,0

B

/I DSKNM /B DCP$ATW

/2 lOSID /c 256

/3 lOSESS /D

/4 $1F /E

/5 40 /F

/6 4 /G 064

/7 CRDl /H

/8 /I

/9 $FFFF /J

/A $FFF3 /K

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX E

B

DSKDCB DSKNM,I0SID,I0SESS,$1F,40,4,'CRD1',0,$FFFF,$FFF3,DCP$ATW,
256,0,0,0,064,0,0,0,0

were used to created the following disk DCB:

DIPDCB DDCBLN,DSKNM,I0SID,I0SESS,$1F,40,4,'CRD1',0
Address of next DCB in linked list.
ASCII identification for this DCB.
Address of DCQ entry.
Name of task making the request.
Session of task making the request.
Address of LUT.

Attributes of device associated with this DCB.

Write/read protect codes.
"Device in use" flag.

Write/read counts.
Device flag (device code).
Device flag (device status).
Channel identification.
Device number associated with the channel.
Task priority.
Current record number.
Storage area for the lOCB being processed.
Logical address of lOCB in user's address space.
Configuration coordination flag (0 --> at defaults).
Break count.
Address of break service LUT.

Break service address.
Space for status fields.
Attributes mask.
Parameters mask.
Attributes word.
Number of bytes/sector.
Total number of sectors -- returned information.
Write time-out.
Read time-out.
Number of sectors/track.
Number of heads.
Number of tracks -- returned information.
Interleave factor.
Spiral offset (in sectors).
16 bytes reserved for future use.

Polling byte offset. -- [#1] --

Polling mask.
Polling test value.
Offset from physical device address for reset.

Value for reset.
Reserved.

DC.L *+DDCBLN
DC.L DSKNM
DC.L
DC.L lOSID
DC.L lOSESS
DC.L
DC.W $1F
DC.W
DC.W
DC.L
DCB 40
DCB 4

DC.L 'CRDl'
DCB
DCB
DC.L
DS.B lOSBLN
DC.L
DCB
DCB
DC.L
DC.L
DCB 0,0,0,0
DC.W $FFFF
DC.W $FFF3
DC.W DCP$ATW
DC.W 256
DC.L
DC.L
DC.L
DCB 064
DCB
DC.W
DCB
DCB
DC.L 0,0,0,0
DC.W
DCB $80
DCB $80
DC.W
DCB 3

DCB

180 MICROSYSTEMS

(M) MOTOROLA APPENDIX F

APPENDIX F

SAMPLE FILES CREATED BY THE DRIVER WRITER

F.l INTRODUCTION

This appendix contains examples of the file types that driver writers must
create or modify in order to add their drivers into the system. Examples of

the following types are provided.

Assembly chainfile
Link file for SYSGEN
Configuration files (DCBs and CDBs)
Patch chainfile
INCLUDE file for SYSGEN (for including driver)
Chainfile for copying driver files for SYSGEN
Memory allocation INCLUDE file (process control driver only)

Memory allocation module (process control driver only)
Switch file of modules in system
Conditional file to bring in INCLUDE file for SYSGEN
Chainfile for copying all files for SYSGEN
Address offsets

F.2 EXAMPLES

F.2.1 Sample Assembly Chainfile

Filenames:
9992.&.XXXXDRV.AF (Process Control Drivers)
9993.&.XXXXDRV.AF (TRAP #2 drivers)

**

* 9993.&.XXXXDRV.AF
**

=/* &.RWINDRV.AF
=/* Chainfile to assemble the RWIN disk controller driver.
=/* If no output argument is specified for the listing, the
=/* chainfile will default to &.RWINDRV.LS =/* .

=/IFC 1

=ARG &.RWINDRV.LS
=/ENDIF
=ASM &.RWINDRV.SA,&.RWINDRV.R0,\1;-WRZ=186
=/*{ Included files are:
=/* 9995.&.STR.EQ
=/* 9995.&.TCB.EQ
=/* 9995.&.CCB.EQ
=/* 9995.&.LV5.EQ
=/* 9995.&.I0E.EQ
=/* 9995. &. NIG. EQ
=/* COMCMD.AI
=/* RWININT.AI
=/*}

=END

^^^ MICROSYSTEMS

(g) MOTOROLA APPENDIX F

B

F.2.2 Link File for SYSGEN

Filenames:
9992.&.XXXXDRV.LG
9993.8i.xxxxDRV.LG

**
*

* 9992.&.XXXXDRV.LG
*

=/*
=/* &.M510DRV.LG
=/*
=/* Link chainfile run at SYSGEN time to link MVME610 driver.
=/*
=/* SYSGEN parameter LINKLS = \LINKLS = file/device to which to send
=/* the linker listing.
=/*
=/* SYSGEN parameter M610DRV = \M610DRV = address at which to link driver.
=/*

=LINK ,&.M610DRV.LO,\LINKLS;MIXH
SEG SEGO:0 \M610DRV
INPUT &. M610DRV.ro
INPUT &.SYSPAR.RO
END
=/*

=END

**
*

* 9993.&.XXXXDRV.LG
*

=/*
=/* &.RWINDRV.LG
=/*
=/* Link chainfile run at SYSGEN time to link RWINl driver.
=/*
=/* SYSGEN parameter LINKLS = \LINKLS = file/device to which to send
=/* the linker listing.
=/*
=/* SYSGEN parameter RWINDRV = \RWINDRV = address at which to link driver
=/*

=LINK ,&. RWINDRV. LO,\LINKLS;HAMIXS
SEGMENT RWIN:0-15 \RWINDRV
INPUT &. RWINDRV.ro
END
=/*

^^^ MICROSYSTEMS

(g) MOTOROLA '''™'^ '

F.2.3 Configuration Files (DCBs and CDBs}

Filenames:
9992.&.XXXXI0C.SI Process control drivers only
9992.&.I0CINT.AG Process control drivers only
9993.I0C.xxxxDRV.AG TRAP #2 drivers

**
*

* 9992.&.XXXXI0C.SI
*

**
* INCLUDE &.M510I0C.SI
*==== S5===== S===

*

* THIS IS THE CODE NEEDED TO SET UP CCBS FOR MVME610 or MVME620 MODULES.
*

* Add a CCB definition for each additional module in the system.
* Note that the memory mapped I/O address must be unique for each
* module, must not conflict with any other module in the system, and
* must match the onboard jumper selections. The I/O Channel interrupt
* vector number and hardware interrupt level must correspond to the
* interrupt jumper on the module.
*

*

M610 EQU \M610DRV
*

L610$01 SET \L610$01
L610$02 SET \L610$02
*

* Set up 610/620 module CCBs (for two modules, in this example).
*

CDB X0PEXC,'IN0r,$80,0,M610,0,L610$01,3,\I0CVECl,\IOCLVLl,$FF
& 0,0,0,0,0,0,0,0,0,0,0
*

CDB XOPEXC,'IN02',$80,0,M610,0,L610$02,3,\IOCVEC2,\IOCLVL2,$FF,
& 0,0,0,0,0,0,0,0,0,0,0

*

* 9992.&.I0CINT.AG modification
*

* If any MVME610 or MVME620 modules are specified in <system>.CNFGDRVR.CI,
* include the code to perform CCB allocations for those modules.
*

IFNE \NVME610+\NVME520
INCLUDE &.XM610IOC.SI

ENDC

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX F

B

*

* 9993.&.XXXXDRV.AG
*

* DISK EXAMPLE
*

PAGE
*

* lOC.RWINDRV.AG
*

* Included equate files:
* &.IOE.EQ
* &.NIO.EQ
*

NOLI ST
INCLUDE &.IOE.EQ
INCLUDE &.NIO.EQ

LIST

* Included device-specific macros:
* MACRO. DCB. SI
* MACRO.DCBDISK.SI
*

NOLIST
INCLUDE MACRO. DCB. SI

INCLUDE MACRO.DCBDISK.SI
LIST

PAGE
* Define variables using SYSGEN parameters
*

RWIN EQU \RWINDRV address of RWINl driver
LWIN$01 EQU \LWIN$01 RWINl module #1 address

LWIN$02 EQU \LWIN$02 RWINl module #2 address

NHRWIN$1 EQU \NHRWIN$1 # hard disks on 1st RWINl controller module

NFRWIN$1 EQU \NFRWIN$1 # floppy disks on 1st RWINl controller module

NHRWIN$2 EQU \NHRWIN$2 # hard disks on 2nd RWINl controller module

NFRWIN$2 EQU \NFRWIN$2 # floppy disks on 2nd RWINl controller module

**
*

* SET UP DCBS FOR RWINl
**
*

* Set up DCB parameters for RWINl
* (media independent)

DEV ATT SET $1F
DEV CODE SET
DEV STAT SET 4

PAR MASK SET $1AF3
ECC LEN SET

12'* MICROSYSTEMS

® MOTOROLA APPENDIX F

**
*

* HARD DISKS ON FIRST RWINl CONTROLLER

**

CHAN_ID SET 'WINl'
IFGE NHRWIN$1-1

**
*

* First hard disk on first RWINl controller
*

**

DSKNM SET 'HD\CONTWINI\ZERO'
SIZESET SET If nonzero then a disk media has been selected.

IFC \RWIN0$1,'H8WIN10'
*

* 8" 10Mb hard disk
*

INCLUDE &.H8WIN10.SI
SIZESET SET 1

ENDC
IFC \RWIN0$1,'H5WIN05'

*

* 5-1/4" 5Mb hard disk
*

INCLUDE &.H5WIN05.SI
SIZESET SET 1

ENDC
IFC \RWIN0$1,'H5WIN10'

*

* 5-1/4" 10Mb hard disk
*

INCLUDE &.H5WIN10.SI
SIZESET SET 1

ENDC
IFC \RWIN0$1,'H5WIN15'

*

* 5-1/4" 15Mb hard disk

INCLUDE &.H5WIN15.SI
SIZESET SET 1

ENDC
IFC \RWIN0$1,'H5WIN40'

*

* 5-1/4" 40Mb hard disk
*

INCLUDE &.H5WIN40.SI
SIZESET SET 1

ENDC

185 MICROSYSTEMS

@) MOTOROLA
APPENDIX F

H

* Make sure the user has defined a valid media type.
*

IFEQ SIZESET
FAIL ** Invalid media type

ENDC
4c

* Set up attribute mask for hard disk on RWINl
*

ATT MASK SET 0«IOADDEN+0«IOATDEN+0«IOADSIDE+0«IOAFRMT
ATT^MASK SET ATT_MASK+1«IOARDISC+0«IOADDEND+0«IOATDEND+0«IOARIBS
ATT_MASK SET ATT_MASK+0«IOADPCOM+0«IOASIZE+1«IOAALT

ATT_WORD SET ATT_W0RD+1«I0AALT
*

* Set up interleave for hard disk on RWINl
*

INTERLEAVE SET 1

DSKDCB DSKNM,IOSID,IOSESS,DEV_ATT,DEV_CODE,DEV_STAT,CHAN_ID,

& DSKNM&$F,ATT MASK,PAR_MASK,ATT_WORD,\DCP$VSS,0,\DCP$WTO,

& \DCP$RTO,SECT PER TRK,NUM_HEADS,CYL_DISK, INTERLEAVE, SPIRAL_OFF,

& BYTES_PER_SECTOR,START_HEAD_NUM,CYL_DRIVE,PRE_COMP,SECT_DRIVE,

& STEP_RATE,R_W_PRE_COMP,ECC_LEN
ENDC

IFGE NHRWIN$l-2

**
*
* Second hard disk on first RWINl controller
*
**

DSKNM SET DSKNM+1

SIZESET SET If nonzero then a disk media has been selected.

IFC \RWINI$1,'H8WIN10'
*

* 8" 10Mb hard disk
*

INCLUDE &.H8WIN10.SI

SIZESET SET 1

ENDC
IFC \RWIN1$1,'H5WIN05'

*

* 5-1/4" 5Mb hard disk
*

INCLUDE &.H5WIN05.SI

SIZESET SET 1

ENDC
IFC \RWIN1$1,'H5WIN10'

12^ MICROSYSTEMS

® MOTOROLA 'APPENDIX F

* 5-1/4" 10Mb hard disk

INCLUDE &.H5WIN10.SI
SIZESET SET 1

ENDC
IPC \RWIN1$1,'H5WIN15'

*

* 5-1/4" 15Mb hard disk

INCLUDE &.H5WIN15.SI
SIZESET SET 1

ENDC
IPC \RWIN1$1,'H5WIN40'

* 5-1/4" 40Mb hard disk

INCLUDE &.H5WIN40.SI
SIZESET SET 1

ENDC
*
* Make sure the user has defined a valid media type.
*

IPEQ SIZESET
PAIL ** Invalid media type
ENDC

*

* Set up attribute mask for hard disk on RWINl.
*

ATT_MASK SET 0«IOADDEN+0«IOATDEN+0«IOADSIDE+0«IOAPRMT
ATT_MASK SET ATT_MASK+1«IOARDISC+0«IOADDEND+0«IOATDEND+0«IOARIBS
ATT_MASK SET ATT_MASK+0«IOADPCOM+0«IOASIZE+1«IOAALT

ATT_WORD SET ATT_W0RD+1«I0AALT

* Set up interleave for hard disk on RWINl

INTERLEAVE SET 1

DSKDCB DSKNM, lOSID, IOSESS,DEV_ATT,DEV_CODE,DEV_STAT,CHAN_ID,
& DSKNM&$P,ATT_MASK,PAR_MASK,ATT_WORD,\DCP$VSS,0,\DCP$WTO,
& \DCP$RTO,SECT_PER_TRK,NUM_HEADS,CYL_DISK, INTERLEAVE, SPIRAL_OPP,

& ByTES_PER_SECTOR,START_HEAD_NUM,CYL_DRIVE,PRE_COMP,SECT_DRIVE,
STEP_RATE, R_W_PRE_COMP, ECC_LEN

ENDC

*

* FLOPPY DISKS ON FIRST RWINl CONTROLLER
*
**

IPGE NPRWIN$I-1

^^^ MICROSYSTEMS

H

® AfOTOROI... ''™'^ '

* First floppy disk on first RWINl controller

DSKNM S ET ' FD\CONTW I N 1 \TWO

'

SIZESET SET If nonzero then a disk media has been selected.

IPC \RWIN2$l,'F8DDDSr
*

8" double-density, double-sided, IBM format
*

INCLUDE &.F8DDDSI.SI
SIZESET SET 1

ENDC
IFC \RWIN2$1,'F8SDDSM'

*

* 8" single-density, double-sided, Motorola format
*

INCLUDE &.F8SDDSM.SI
SIZESET SET 1

ENDC
IFC \RWIN2$l,'F8SDSSr

*

* 8" single-density, single-sided, IBM format
*

INCLUDE &.F8SDSSI.SI
SIZESET SET 1

ENDC
IFC \RWIN2$1,'F8SDSSM'

*

* 8" single-density, single-sided. Motorola format
*

INCLUDE &.F8SDSSM.SI
SIZESET SET 1

ENDC
IFC \RWIN2$1,'F5DDDSI'

*

* 5-1/4" double-density, double-sided, IBM format
*

INCLUDE &.F5DDDSI.SI
SIZESET SET 1

ENDC
* Make sure the user has defined a valid media type.

IFEQ SIZESET
FAIL ** Invalid media type
ENDC

*

* Set up attributes mask for floppy on RWINl
*

ATT_MASK SET 1«I0ADDEN+I«I0ATDEN+1«I0ADSIDE+1«I0AFRMT
ATT_MASK SET ATT_MASK+1«IOARDISC+0«IOADDEND+0«IOATDEND+0«IOARIBS
ATT_MASK SET ATT_MASK+0«IOADPCOM+0«IOASIZE+0«IOAALT

ATT_WORD SET ATT_WORD+0«IOAALT

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX F

* Set up interleave for floppy on RWINl

INTERLEAVE SET 1

DSKDCB DSKNM,IOSID,IOSESS,DEV_ATT,DEV_CODE,DEV_STAT,CHAN_ID,
& DSKNM&$F,ATT_MASK,PAR_MASK,ATT_W0RDADCP$VSS,0,\DCP$WTO,
& \DCP$RTO,SECT_PER_TRK,NUM_HEADS,CYL_DISK, INTERLEAVE, SPIRAL_OFF,
& BYTES_PER_SECTOR,START_HEAD_NUM,CYL_DRIVE,PRE_COMP,SECT_DRIVE,
& STEP_RATE,R_W_PRE_COMP,ECC_LEN

ENDC

IFGE NFRWIN$l-2

*

* Second floppy disk on first RWINl controller
*

**

DSKNM SET DSKNM+1
SIZESET SET If nonzero then a disk media has been selected.

IFC \RWIN3$l,'F8DDDSr
*

* 8" double-density, double-sided, IBM format
*

INCLUDE &.F8DDDSI.SI
SIZESET SET 1

ENDC
IFC \RWIN3$1,'F8SDDSM'

*

* 8" single-density, double-sided. Motorola format
*

INCLUDE &.F8SDDSM.SI
SIZESET SET 1

ENDC
IFC \RWIN3$l,'F8SDSSr

*

* 8" single-density, single-sided, IBM format
*

INCLUDE &.F8SDSSI.SI
SIZESET SET 1

ENDC
IFC \RWIN3$1,'F8SDSSM'

*

* 8" single-density, single-sided. Motorola format
*

INCLUDE &.F8SDSSM.SI
SIZESET SET 1

ENDC
IFC \RWIN3$l,'F5DDDSr

^^^ MICROSYSTEMS

H

(g) MOTOf^OLJK
APPENDIX F

* 5-1/4" double-density, double-sided, IBM format
*

INCLUDE &.F5DDDSI.SI
SIZESET SET 1

ENDC
* Make sure the user has defined a valid media type.

IFEQ SIZESET
FAIL ** Invalid media type
ENDC

*

* Set up attributes mask for floppy on RWINl
*

ATT_MASK SET 1«I0ADDEN+1«I0ATDEN+1«I0ADSIDE+1«I0AFRMT
ATT_MASK SET ATT_MASK+1«IOARDISC+0«IOADDEND+0«IOATDEND+0«IOARIBS
ATT_MASK SET ATT_MASK+0«IOADPCOM+0«IOASIZE+0«IOAALT

ATT_WORD SET ATT_WORD+0«IOAALT

* Set up interleave for floppy on RWINl
*

INTERLEAVE SET 1

DSKDCB DSKNM,IOSID,IOSESS,DEV_ATT,DEV_CODE,DEV_STAT,CHAN_ID,
& DSKNM&$F,ATT_MASK,PAR_MASK,ATT_W0RD,\DCP$VSS,0,\DCP$WTO,
& \DCP$RTO,SECT_PER_TRK,NUM_HEADS,CYL_DISK, INTERLEAVE, SPIRAL_OFF,
& BYTES_PER_SECTOR,START_HEAD_NUM,CYL_DRIVE,PRE_COMP,SECT_DRIVE,
& STEP_RATE,R_W_PRE_COMP,ECC_LEN

ENDC

it***^
*

* SET UP CDBS FOR FIRST RWINl
Ic**^^
*

*** CHANNEL DATA BLOCK ***

CDB 0,CHAN_ID,XTDWIN,254,RWIN,0,LWIN$01,1,\IOCVEC3,\IOCLVL3,$10,0,0, &

0,0,0,0,0,0,0,0,0

*

*

* OTHER RWIN MODULE DEVICES ARE SET UP SIMILARLY

END

*

* 9993.&.XXXXDRV.AG
*

* TERMINAL EXAMPLE
*

^^° MICROSYSTEMS

@) MOTOROLA APPENDIX F

lOC.MPSCDRV.AG

*

*

*

* Included equate files:
* &.IOE.EQ

&.NIO.EQ
* &.LV5.EQ

NOLIST
INCLUDE &.IOE.EQ
INCLUDE &.NIO.EQ
INCLUDE &.LV5.EQ
LIST

Included device-specific macros
MACRO. DCB. SI

MACRO. DCBTERM. SI

NOLIST
INCLUDE MACRO. DCB. SI

INCLUDE MACRO. DCBTERM. SI

LIST

INCLUDE \&FILENAM

PAGE
*
* Assign values from SYSGEN parameters

DVCODE SET \&CRTDV Define starting device code

* Define the physical addresses of the drivers
MPSC EQU \MPSCDRV common 7201 driver
SDRVADD EQU \&SDRVADD

Define offset from Port A to Port B (hardware constant on MVME400 module)
PORTB EQU 1*\CMULT

* Define TCP$ATW one time here for all terminals
TCP$ATW SET \TCP$HCPY+\TCP$XCTL«1+\TCP$BITS«2+\TCP$STPB«3+\TCP$USEP«4
TCP$ATW SET TCP$ATW+\TCP$PRTY«5+\TCP$ECH0«6+\TCP$TAHD«7+\TCP$TFUL«8
TCP$ATW SET TCP$ATW+\TCP$PNUL«9+\TCP$MODM«10+\TCP$OFFH«11

1c***
*

* SET UP DCB FOR FIRST MPSC PORT ON FIRST MODULE

**
***** 1st MPSC port *****

IFGE NUBRDI-1
* 1st MPSC port on 1st module

SNAME SET '\&SDRVR'«8+{DVC0DE&$FF) supervisor channel name mnemonic

^^^ MICROSYSTEMS

(^ MOTOROLA APPENDIX F

B

CNAME SET 'CMP'+(DVCODE&$FF) channel name mnemonic

-- DATA CONTROL BLOCK --

CRTDCB DVCODE.IOSID.IOSESS, $133, 35,1, CNAME, 0,ATT_MASK,PAR_MASK,TCP$ATW,
& \TCPREC,\TCPRSZ,\TCPWTO,\TCPRTO,\TCPXOF,\TCPXON,\TCPBRC,\TCPDOP,
& \TCPRLN,\TCPCLC,\TCPRTV,\TCPEOL,\TCPBRT,\TCPNLS,\TCPTRC,\TCPTTP

*** CHANNEL DATA BLOCK ***

CDB $0011, SNAME,0, 254, SDRVADD,0,DEVADDR1,1,I0CVECT,I0CLVL,
& $30,0,0,0,0,0,0,0,0,0,0,0
CDB $0009 , CNAME , CHANTYPl , 254 , MPSC , SNAME , DEVADDRl , 1 , lOCVECT, lOCLVL

,

& $30,0,0,0,0,0,0,0,0,0,0,0
DVCODE SET DVCODE+1
ENDC

* OTHER PORTS ARE SET UP SIMILARLY
*

END

*

* 9993.&.XXXXDRV.AG
*

* PRINTER EXAMPLE
**

* lOC.PIADRV.AG

* Included equate files:
* &.IOE.EQ

*
&.NIO.EQ
&.LV5.EQ

NOLIST
INCLUDE &.IOE.EQ
INCLUDE &.NIO.EQ
INCLUDE &.LV5.EQ
LIST

* Included device-specific macros
* MACRO. DCB. SI
* MACRO. DCBPRT. SI

NOLIST
INCLUDE MACRO. DCB. SI

INCLUDE MACRO. DCBPRT. SI

LIST

INCLUDE \&FILENAM Include file for specific PIA
*

* Assign values from SYSGEN parameters

^^^ MICROSYSTEMS

(g) MOTOROLA
APPENDIX F

DVCODE SET \&PRTDV Define starting device code

PIA EQU \PIADRV Define the physical address of the driver

*

* Define offset from Port A to Port B (hardware constant on MVME410 module)
*

PORTB EQU 8

CNAME SET {'C'«16)+(DVC0DE»8) channel name mnemonic

* Define printer attribute word (PCP$ATW) one time for all printers

PCP$ATW SET \PCP$TLRL«2+\PCP$AFF«1+\PCP$LNFD

**
*

* SET UP DCB FOR 1ST PIA (PORT A) PRINTER
*
**

IFGE NUBRDl-1
*

* PIA #1, printer port A
*

-- DATA CONTROL BLOCK --
*

PRTDCB DVCODE, lOSID.IOSESS, $632, 95,1, CNAME, 0,$0007, $0033, PCP$ATWAPCP$REC,

& \PCPRSZ,\PCPWTO,\PCPLRL,\PCPELC

IFNE DVCODE- 'PR
'

DVCODE SET DVCODE+$100 Set up for next printer ID

ENDC
IFEQ DVCODE- 'PR

'

DVCODE SET 'PRl
'

ENDC

**

*

* SET UP CDB FOR 1ST PIA (PORT A) PRINTER
*
**

*** CHANNEL DATA BLOCK ***

CDB 0,CNAME,XTPRTL,254,PIA,0,DEVADDR1,7,IOCVECT,IOCLVL,$10,
& 0,0,0,0,0,0,0,0,0,0,0
ENDC

*

* OTHER PORTS ARE SET UP SIMILARLY

END

D

193 MICROSYSTEMS

® MOTOftOLA APPENDIX F

F.2.4 Patch Chainfile

Filename:
9998.VERSAPT.xxxxDRV.CF

It***
*

* 9998.VERSAPT.xxxxDRV.CF
**

=/*
=/* VERSAPT.RWINDRV.CF
=/*

=PATCH VERSADOS.SY
*>-- - ---

\RWINDRV * Start of RWINDRV
*<--- - -

QUIT

D

F.2.5 INCLUDE File for SYSGEN (for Including Driver)

Filenames:
9992.&.XXXXDRV.CI Process Control Drivers
9993.&,xxxxDRV.CI TRAP #2 drivers

*
* 9992.&.XXXXDRV.CI

*

* &.M610DRV.CI
*

MSG ***

MSG ** MVME610/620 DRIVER - AC INPUT/DC INPUT
f^5Q ***

* Set Process Control Flag= ON
&PCDRV = \&PCDRV+1

M610QSIZ = 128 Minimum number of entries in Interrupt Processing
* Queue

* Build VERSAdos patch chainfile <system>.VERSAPT.CF
=COPY VERSAPT.M610DRV.CF,VERSAPT.CF;A

M610DRV = * MVME610/620 driver base address
SUBS &.M6I0I0C.SI CCB allocations
SUBS &.M610DRV.LG Driver module LINK command file
LINK &.M610DRV.LG
IFEQ \LINKLSW

=COPY \LINKLS,\WORKLS;A
ENDC
PROCESS &.M610DRV.L0
END &.M610DRV.L0

^^^ MICROSYSTEMS

(§) MOTOROLA APPENDIX F

*

* 9993.&.XXXXDRV.CI

**
*

* &.RWINDRV.CI
*

MSG ***

MSG ** RWINl DRIVER - Winchester Disk Controller
MSG ***

* Adjust total number of disks -

&TOTDSK = \&TOTDSK+\HRWIN$01+\FRWIN$01+\HRWIN$02+\FRWIN$02

* Build VERSAdos patch chainfile <system>.VERSAPT.CF
=COPY VERSAPT.RWINDRV.CF,VERSAPT.CF;A

RWINDRV = *

SUBS &. RWINDRV. LG

LINK &. RWINDRV. LG

IFEQ \LINKLSW
=COPY \LINKLS,\WORKLS;A

ENDC
PROCESS &. RWINDRV. LO
END &. RWINDRV. LO

* Assemble the IOC portion and merge with current lOC.RO
SUBS IOC. RWINDRV. AG
ASM IOC. RWINDRV. AG, NEW. RO,\ASMLS;RMZ=100
IFEQ \ASMLSW

=COPY \ASMLS, IOC. LIST. TF;A
ENDC

* Generate merged lOC.RO by appending new .RO file
INCLUDE &.IOCGEN.CI
IFEQ \LINKLSW

=COPY \LINKLS, IOC. LIST. TF;A
ENDC

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX F

F.2.6 Chainfile for Copying Driver Files for SYSGEN

Filename:
9998.C0PYGEN.xxxxDRV.CF

*

* 9998.C0PYGEN.xxxxDRV.CF
*

* Process control driver
*

=/* C0PYGEN.M610DRV.CF
=COPY \1
=COPY \1
=COPY \1
=COPY \1
=COPY \1
=COPY \1
=COPY \1

Chainfile to copy all files for SYSGEN of MVME610

9992.&.M610DRV.LG \2:\3;\4C
9992. &. M610DRV.ro \2:\3;\4C
9992.&.M610IOC.SI \2:\3;\4C
9992.&.M610MEM.AG \2:\3;\4C
9992.&.M610MEM.CI \2:\3;\4C
9992.&.M610DRV.CI \2:\3;\4C
9998.VERSAPT.M610DRV.CF \2:\3;\4C

H

*

*

*

*

*

9998.C0PYGEN.xxxxDRV.CF

TRAP #2 driver

=/*
=/* COPYGEN.RWINDRV.CF - Chainfile to copy all files for SYSGEN of RWINl
=/* (Remote Winchester Driver)

=COPY \1:9993.&.RWINDRV.CI \2:\3;\4C
=COPY \1:9993.&.RWINDRV.LG \2:\3;\4C
=COPY \1: 9993. &. RWINDRV.ro \2:\3;\4C
=C0PY \1:9998.I0C.RWINDRV.AG \2:\3;\4C
=COPY \1:9998.VERSAPT.RWINDRV.CF \2:\3;\4C

196 MICROSYSTEMS

(g) MOTOROLA
APPENDIX F

F.2.7 Memory Allocation INCLUDE File (Process Control Driver Only)

Filename:
9992.&.XXXXMEM.CI

**
*

* 9992.&.XXXXMEM.CI
*
**
*

* &.M510MEM.CI
*

MCQ **

MSG * MVME510/620 driver initialization
MgQ **

SUBS &.M610MEM.AG
ASM &.M610MEM.AG,NEW.R0,\ASMLS
IFEQ \ASMLSW

=COPY \ASMLS,\WORKLS;A
ENDC

INCLUDE &.ROGEN.CI

F.2.8 Memory Allocation Module (Process Control Driver Only)

Filename:
9992.&.XXXXMEM.AG

*

* 9992.&.XXXXMEM.AG
*

*
*

&.M510MEM.AG

IFNE \NVME510+\NVME620
NOFORMAT
PAGE

PAGAL EQU 4

KILLER EQU 32
OPT ORE

RMS68K PAGAL TRAP #0 directive number
RMS68K KILLER TRAP #0 directive number

**
*

^^^ MICROSYSTEMS

® MOTOROLA APPENDIX F

* Interrupt Processing Queue Allocation and Initialization
* for the Input Module (MVME610/620) Driver

* This code section allocates memory for the Interrupt Queue Control Table
* and the Interrupt Processing Queue used by the Input Module Driver. First a
* page of memory is allocated for the control table, and the base address of
* the table is stored in SYSPAR's INPTBL field for later retrieval by the
* driver's initialization routine. The table is initialized and the memory
* required for the Interrupt Processing Queue is calculated and allocated
* based on SYSGEN parameter M610QSIZ. If all of the required pages of memory
* cannot be allocated, RMS68K routine KILLER is called to force system crash.
* This code is linked into the System Initializer as described in the SYSGEN
* instructions for the driver. In the following code, symbols preceded by a
* backslash (\) character are user-specified SYSGEN parameters that are
* replaced with numeric values by the SYSGEN SUBS command prior to assembly
* of this source. The parameters are assumed to have been validated in a
* separate assembly performed earlier in the SYSGEN process.
**

This symbol is an address within SYSPAR.

H

SPC 2

XREF INPTBL
XDEF M610MEM
SPC 2

SECTION 8
SPC 2

M610QSIZ
*

EQU \M610QSIZ

SPC 2

INCLUDE &.BAB.EQ
* INCLUDE &.BAB.EQ

INCLUDE &.M610INTQ.EQ
* INCLUDE &.M510INTQ.EQ

SECTION 8
SPC 2

M610MEM EQU *

INPMEM CLR.L DO

MOVE.L DO,AO
MOVE.L D0,A1
MOVE.L D0,A6
SPC 2

ADD.W #1,A0
MOVE.B #PAGAL,DO
TRAP #0
BRA.S INPMOIO
BSR.S INPMKILL
SPC 2

INPMOIO MOVE.L AO, INPTBL

*
MOVE.L A0,A4

*

SPC 2

MOVE.W #63, DO
INPM020 CLR.L {A0)+

DBRA D0,INPM020
PAGE

Interrupt Processing Queue size (maximum
number of entries the queue is to contain),

Clear all registers to be used in calling
the RMS68K memory allocation routine.

Call RMS68K routine PAGAL to allocate 256

bytes (1 page) of memory for global vari-

able storage. If no memory is available,

call RMS68K routine KILLER to crash the

system.

Save global variable area address returned
by PAGAL in the input driver table pointer
(INPTBL) within SYSPAR. Make a permanent

copy of the address in A3.

Clear the global variable area to all

zeros.

198 MICROSYSTEMS

® MOTOROLA APPENDIX F

* The following code uses the Interrupt Queue Control Table (IQCT) and
* allocates memory for the queue.

Clear Dl for use as work register.

Load the number of entries that the
Interrupt Queue is to contain into D5.

Initialize ASCII ID field in the IQCT with
the mnemonic IQCT. This serves as a visual

aid in analyzing memory dumps for debug.

Calculate queue length in bytes by multi-
plying the number of entries in the queue
by the queue entry length.

Calculate the minimum number of 256-byte
memory pages necessary to accommodate the

specified number of queue entries.

Calculate bit number of the most signifi-
cant bit of the number of pages to allo-

cate in D5.

If bits other than the most significant bit

of the number of pages are set, increment
the number of the most significant bit to

the next higher power of two.

Set the number of pages to allocate to

the lowest power of two that will hold the

requested number of queue entries.

Load the number of pages to be allocated
into AO and call RMS58K routine PAGAL to

obtain the memory. If the required amount
of memory is not available, call RMS68K
routine KILLER to crash the system.

Store the Interrupt Processing Queue
base address in the IQCT.

Convert the length of the Interrupt Queue
in 256-byte pages to the length in bytes.

Form the queue wraparound mask by decre-
menting the queue length, and store the

mask in the queue control entry.
SPC 2

is the end of the Input Module Driver system initialization routine.

FORMAT

END

SPC 2

INPM050 CLR.L Dl

SPC 2

*
MOVE.W #M610QSIZ,D5

SPC 2

*
MOVE.L #'IQCT',QID(A4)

*

SPC 2

*
MULU #IQENTLN,D5

*

SPC 2

TST.B D5
BEQ.S INPM055
ADD.W #256, D5

INPM055 LSR.W #8,D5
SPC 2

MOVE.W #15, DO
INPM057 LSL.W #1,D5

DBCS D0,INPM057
SPC 2

BEQ.S INPM058

*
ADD.W #1,D0

*

SPC 2

INPM058 CLR.L D5

'*

BSET D0,D5

SPC 2

INPM050 MOVE.L D5,A0
MOVE.L # PAGAL, DO
TRAP #0
BRA.S INPM070

INPMKILL MOVE.L #KILLER,DO
TRAP #0
SPC 2

INPM070
*

MOVE.L A0,QPTR{A4)

SPC 2

ASL.W #8,D5
SUB.W #1,D5
MOVE.W D5,QWAMSK(A4)

This

ENDC

199 MICROSYSTEMS

® MOTOROLA APPENDIX F

F.2.9 Switch File of Module in System

Filename:
9998.<systeni>.CNFGDRVR.CI

*

* 9998.<system>.CNFGDRVR.CI modification *

*
*

Process control driver example

*

NVME610 # of MVME610 AC input controller boards

9998.<system>.CNFGDRVR.CI modification

*

*

*

* TRAP #2 disk driver example *

*

B
NORWINl = 2

IFGT \N0RWIN1
CONTRWIN = "0"

HRWIN$01 = 2

FRWIN$01 = 2

RWIN0$01 = '"H5WIN15'"
RWIN1$01 = "'H5WIN15'"
RWIN2$01 = •"FBDDDSr"
RWIN3$01 = "'F5DDDSI'"

ENDC
IFGT \N0RWIN1-1

C0NTWIN2 = 1"

HRWIN$02 = 2

FRWIN$02 = 2

RWIN0$02 = "'H5WIN15'"
RWIN1$02 = '"H5WIN15'"
RWIN2$02 = "'F5DDDSr"
RWIN3$02 =
•k

'"F5DDDSI'"

* NOTE: Do not mix

of RWINl Winchester controller boards

RWINl is controller
of hard disk drives on RWINl; max= 2

of 5-1/4" floppy drives on RWINl; max= 2

Type of 1st hard disk on 1st RWINl, drive

Type of 2nd hard disk on 1st RWINl, drive 1

Type of 1st floppy disk on 1st RWINl, drive 2

Type of 2nd floppy disk on 1st RWINl, drive 3

RWINl is controller
of hard disk drives on RWINl; max= 2

of 5-1/4" floppy drives on RWINl; max= 2

Type of 1st hard disk on 1st RWINl, drive

Type of 2nd hard disk on 1st RWINl, drive 1

Type of 1st floppy disk on 1st RWINl, drive 2

Type of 2nd floppy disk on 1st RWINl, drive 3

Do not mix 5-1/4" and 8" floppies. Choose one or the other.

ENDC

200 MICROSYSTEMS

(g) MOTOROLA. 'APPENDIX F

F.2.10 Conditional File to Bring in INCLUDE File for SYSGEN

Filename:
9998.<systeni>.IFDRVR.CI

*

* 9998.<system>.IFDRVR.CI modification

ic***

IFNE \NVME510+\NVME620
INCLUDE &.M5I0DRV.CI

ENDC

IFNE \N0RWIN1
INCLUDE &.RWINDRV.CI

ENDC

F.2.11 Chainfile For Copying All Files For SYSGEN

Filename:
9998 . <system> . COPYSGEN . CF

*

* 9998. <system>. COPYSGEN. CF modification
*

=/*-— -

=/* Copy all VME610 files for SYSGEN
=/& \1:9998.C0PYGEN.M610DRV.CF
=/*
=/* -

=/* Copy all RWINl (Winchester) driver files for SYSGEN
=/@ \1:9998.C0PYGEN.RWINDRV.CF
=/*

^°^ MICROSYSTEMS

® MOTOROLA APPENDIX F

F.2.12 Address Offsets

Filenames:
IOC. ADDRESS. CI

SIO. ADDRESS. CI

For modules on I/O Channel
For modules in short address space

**

IOC. ADDRESS. CI*

*

**

* I/O Channel Address Offsets for Standard SYSGENs
**

B

* NOTES: 1. These addresses are coded into many of the firmware debuggers
* so the bug can access the device. REQUIRED FOR BOOTING!
* 2. A maximum of 16 devices can be on the channel at one time
* for guaranteed operation in a "worst case" situation.
*

* Symbol format is: Lnnn$mm
* where: L= location
* nnn= VMEmodule number/description or Vnn for VERSAmodule
* $= separator
* mm= module number 01-99
*

* "CMULT" is defined in the "<system>. SYSTEM. CI" file.
* "+$NN" is the offset to the 1st module register.

L610$01
*

L610$02
*

= \IOCBASE+($002*\CMULT)+$1

= \I0CBASE+($004*\CMULT)+$1

MVME610 module #1, port address

L610$01 = \L610$01
MVME610 module #2, port address

L610$02 = \L610$02

LWINSOl
*

LWIN$02
*

= \IOCBASE+{$068*\CMULT)+$03 RWINl module #1, port address
LWINSOl = \LWIN$01

= \IOCBASE+($060*\CMULT)+$03 RWINl module #2, port address
LWIN$02 = \LWIN$02

**
*

* SIO. ADDRESS. CI
*

**
* Short I/O Address Space Offsets for Standard SYSGENs
**

* NOTE:
*

*

*

1. These addresses are coded into many of the firmware debuggers

so the bug can access the device. REQUIRED FOR BOOTING!

202 MICROSYSTEMS

(g) MOTOROLA APPENDIX F

4c

* Symbol format is: Lnnn$mm
* where: L= location
* nnn= VMEmodule number/description or Vnn for VERSAmodule
* $= separator
* mm= module number 01-99

L320$01 = \SIOBASE+$B0OD VME320 module #1 address
* L320$01 = \L320$01
L320$02 = \SIOBASE+$B01D VME320 module #2 address
* L320$02 = \L320$02

F.2.13 Conditional File to Bring in Memory Allocation File (Process Control

Drivers Only)

Filename:
9992.&.PCDRV.CI

**
*

* 9992.&.PCDRV.CI modification
*

*

IFGT \NVME610+\NVME620
INCLUDE &.M610M£M.CI

ENDC
*

H

^^•^ MICROSYSTEMS

(^ MOTOROLA APPENDIX F

THIS PAGE INTENTIONALLY LEFT BLANK.

B

2°^ MICROSYSTEMS

(g) MOTOROLA APPENDIX G

APPENDIX G

BACKGROUND AND CALL-GUARDED NODES

G.l INTRODUCTION

This appendix describes the background and call -guarded modes of execution
available to code running in supervisor mode.

G.2 BACKGROUND NODE

An Interrupt Service Routine (ISR) that runs in supervisor mode may not need
to do all of its work at interrupt level. After a few instructions, the
remaining work can often be done at interrupt level 0, allowing more timely
service of other interrupts that are pending.

However, an ISR cannot simply lower its mask to 0. It might have interrupted
a lower level interrupt service routine, which might not be ready to process
another interrupt.

What an ISR can do is schedule a piece of code to be run in background mode
(i.e., at interrupt level after all the ISRs currently servicing interrupts
have exited). The RMS68K subroutine BKG_SCHEDULE, also available from TRAP

#0, performs the scheduling (refer to paragraph G.4). When the interrupt
level returns to 0, scheduled background service routines are executed.

Figure 1 illustrates the execution path when several interrupts are taken that
schedule background activity. Notice when, and in what order, the background
routines are executed (dispatched).

Because background routines are dispatched at interrupt level 0, they do not
block other pending interrupts. The routines run in supervisor mode, as do

the drivers, and thus have access to all the system resources. Scheduling and

dispatch of background routines is intended to be very efficient and does not
provide frills. Routines execute in the order in which they were scheduled;
there is no timesl icing of background routines, nor any prioritization.

When a background routine is running and another interrupt occurs that also
schedules background activity, the new background work is not started
immediately. Instead, execution of the already started background routine is

resumed. Only after all previously scheduled background routines have run

does the newly scheduled routine run. This can be thought of as a sort of
mutual exclusion property of background execution.

This is a very useful feature for driver writers. A driver can have several
background routines that access a single data structure, yet each can do so

without fear of corruption by ot;her background routines because they cannot
possibly run until this one is done. Contrast this to ordinary interrupt
processing, where only by keeping interrupts masked can a routine be assured
that one of the other routines does not run as the result of an interrupt and
corrupt the data structure.

2°5 MICROSYSTEMS

® MOTOROLA APPENDIX G

normal user
or supervisor

mode code

I

start level 2

interrupt and
schedule routine A

I

I

finish level 2

interrupt and

schedule routine C

I

Q
I

dispatch background
routine A, then B

I

I

dispatch level 3

interrupt and
schedule routine D

I

process level 4

interrupt and

schedule routine B

I

background routine B

finishes; C is

dispatched, then D

I

resume normal user
or supervisor
mode code

FIGURE 1. Interrupt Execution Path

206 MICROSYSTEMS

® MOTOROLA APPENDIX G

Scheduling a routine for execution in background entails setting a data

structure called a Background Activation Block (BAB) to a queue of BABs called

the background queue. The BAB structure is illustrated in Figure 7-1.

System equate file 9995. &. BAB. EQ defines this structure. The BABUSE flag

should be initialized to zero (false) by the driver before its first use;

thereafter it will be maintained by the scheduler and dispatcher and should

not be touched by the driver. Usually the BAB is part of a larger data

structure, such as a CCB and, in fact, the background routine uses that

knowledge to find the data structure.

The background queue is initialized and maintained entirely by RMS68K.

structure appears in Figure 2.

Its

BKG_HEAD

I I I I I

BKG_TAIL

I I I I

I

I
BAB

I

I

BAB

I

I I

I

I--I BAB
I

FIGURE 2. Background Queue Structure

If the queue is not empty, the head pointer points to the first BAB in the

queue and the tail pointer points to the last. The BABLNK field of each BAB

points to the next BAB, except that the BABLNK of the last BAB is zero.

If the queue is empty, the tail pointer points to the head pointer and the

head pointer is zero.

NOTE

All ISRs must exit through the common interrupt handler. This

is important even for those routines that do not use the

background mechanism, because failure to do so might result

in failure to dispatch some scheduled background activity

before returning to normal user or supervisor mode. This is

handled automatically by drivers under the CMR software.

207 MICROSYSTEMS

B

(g) MOTOROLA APPEN^I^ '

G.3 CALL-GUARDED HODE

A routine that is not running as the result of an interrupt may require the

mutual exclusion relationship with background routines. In other words, a

routine may be written that will be called during initialization or command

service processing which uses data structures that are also used by background

routines. Ordinary code can be interrupted at any time, and background

routines can run as a result.

To protect noninterrupt routines, they should be called using the CALL_GUARDED

mechanism rather than a BSR or JSR instruction. Figure 3 shows how this

protection works.

normal supervisor
mode code

I

I I

I

begin guarded
routine A

I

—
-I

I

process level 3

interrupt and

schedule routine B

I

I

-
I

I

complete guarded
routine A; dispatch
background routine B

I

I—- I

I

resume normal
supervisor
mode code

FIGURE 3. Call -Guarded Mode Path

G.4 BKG_SCHEDULE

BKGSCHEDULE schedules a routine for execution in background mode (i.e., it

puts a BAB on the background queue). When the BKGRND and SET_BAB macros

described in Chapter 7 ("Background Routines Called With the BKGRND Macro")

are used, the BKGSCHEDULE macro is not required (its function has been

accomplished).

^°^ MICROSYSTEMS

(g) MOTOROLA APPENDIX G

If the call is made using TRAP #0, register DO contains the service request

code. AO contains the address of the BAB representing the routine to be

scheduled for background execution.

All registers are preserved by the call. There is only one return from the

call: successful completion. If the BAB was not already on the background
queue, it has been added; if it was already on the queue, it has not been

added again.

On entry to the background routine, the contents of registers DO through D7

and AO through A6 have been saved and can be used. Al points to the BAB that

was used to schedule the routine. The interrupt level is and supervisor
mode is set.

When the background routine exits, supervisor mode must be set and the

interrupt level must be 0. Exit is accomplished with an RTS instruction, so

on exit the stack must be restored to its entry value. Except for A7,

registers do not have to be preserved.

The calling sequence using TRAP #0 is

LEA <BAB address>,AO
MOVE.L #36, DO
TRAP #0

The calling sequence as a subroutine call is

LEA <BAB address>,AO
BSR BKG SCHEDULE

G.5 CALL_GUARDED

CALL_GUARDED executes a routine in guarded mode so that it is guaranteed non-

reentrant execution in relation to background processing. This call should be

made only from interrupt level 0, and from code that is not running as the

result of an interrupt.

If the call is made using TRAP #0, register DO contains the service request
code. AO always contains the address of the routine to be executed in guarded
mode. Registers Dl through D7 and Al through A6 (and DO if the call is made
as a subroutine) can be used to pass parameters to the guarded routine.

On entry to the guarded mode routine, AO contains garbage; DO also contains

garbage if the call is made with TRAP #0. All other registers except A7 are

as the calling routine left them. The interrupt level is and supervisor
mode is set.

When the guarded routine exits, supervisor mode must be set and the interrupt

level must be 0. Exit is accomplished with an RTS instruction, so on exit the

stack must be restored to its entry value. Only register A7 must be preserved,

so any other registers can be used to pass information back to the calling

routine.

^°^ MICROSYSTEMS

Q

a

(g) MOTOROLA APPENDIX G

The calling sequence using TRAP #0 is

LEA oddress of guarded routine>,AO
BSR CALL_GUARDED

The calling sequence as a subroutine call is

LEA <address of guarded routine>,AO
MOVE.L #37, DO

TRAP #0

G.6 ENTRY

ENTRY is a routine which allows a routine that was not linked with RMS68K to

find the addresses of certain RMS68K routines.

Software programs that run in supervisor mode but are not linked with RMS68K

have access to certain RMS68K features through the TRAP #0 instruction. When

a TRAP #0 is performed, the value in DO identifies the routine to be called.

Sometimes even the low overhead of a TRAP #0 is undesirable. In these cases,

users can obtain the actual address of the routine using the ENTRY call during

initialization, and then just call the module as a subroutine. ENTRY can also

be used to verify the existence of a particular TRAP #0 directive.

When calling ENTRY using TRAP #0 (it would make no sense to call it as a

subroutine, because that implies that the routine is linked with the

Executive), register DO contains the service request code of the ENTRY

routine. Register Dl contains the service request code of the routine whose

address is desired.

If a routine exists for the specified code (i.e., Dl is not out of range),

return is to the point immediately following the TRAP #0. AC contains the

address of the specified routine.

If no such routine exists, return is to the position immediately following the

TRAP #0 plus two bytes.

The ENTRY call structure is as follows:

MOVE.L #<directive # whose address is desired>,Dl
MOVE.L #35,00 Call the ENTRY routine to find the

address of this routine

TRAP #0

BRA.S EXISTS Good return

BRA DOES -NOT -EX I ST Bad return

EXISTS MOVE.L AO,RTN ADDR Save address returned from ENTRY call

MOVE.L RTN SEPT. A3 A3 is address of the RMS68K routine;

call the RMS68K routine directly

21° MICROSYSTEMS

SUGGESTION/PROBLEM
REPORT QUALITY • PEOPLE • PERFORMANCE

Motorola welcomes your comments on its products and publications. Please use this form.

To: IVIotorola Inc.

Microsystems

2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Product;

.

Manual:

COMMENTS:

Please Print

Name

.

Title

.

Company

.

Street

City

Division .

Mail Drop

.

State

. Phone

.

-Zip.

For Addnional Motorola Publications

Literature Distribution Center

616 West 24th Street

Tempe, AZ 85282

(602) 994-6561

Four Phase/Motorola Customer Support, Tempe Operations

(800) 528-1908

(602) 438-3100

(g) MOTOROLA

^N

(g) MOTOROLA Semiconductor Products Irtc.

P.O. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

19134 PRINTED IN USA (1/86) MESSENGER 1500

